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ABSTRACT

The motivation behind this thesis is to provide an efficient and comprehensive solu-

tion to secure Supervisory Control and Data Acquisition (SCADA) systems and Industrial

Control Systems (ICS). SCADA/ICS systems used to be on isolated networks. However,

due to the increase in popularity and advancements of wireless networking and cloud tech-

nologies, SCADA/ICS systems have begun to expand their connectivity to the cloud; the

extent of such connectivity can vary from system to system. Benefits of connecting to the

internet/cloud are substantial, but such connectivity also makes those system vulnerable,

for no longer being isolated.

Device recognition is useful first step in vulnerability identification and defense aug-

mentation, but due to the lack of full traceability in case of legacy SCADA/ICS systems,

the typical device recognition based on document inspection is not applicable. leading

to the possibility of unaccounted security vulnerabilities in such systems. We propose a

hybrid approach involving the mix of communication patterns and passive fingerprinting

to identify unknown device types, manufacturers, and models. In addition, our ANDVI

implementation maps the identified devices to their known vulnerabilities

To identify how interdependence among existing atomic vulnerabilities may be exploited

by an adversary to stitch together an attack that can compromise the system, we propose

a model-checking based Automated Attack-Graph Generator and Visualizer (A2G2V). The

proposed A2G2V algorithm uses existing model-checking tools, an architecture description

tool, and our own code to generate an attack-graph that enumerates the set of all possi-

ble sequences in which atomic-level vulnerabilities can be exploited to compromise system

security.
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Attack-graphs analysis enables security administrators to establish appropriate secu-

rity measurements to secure their system but practical considerations on time and cost

can pose limit on their ability to address all system-level vulnerabilities at once. In this

thesis, we propose an approach that identifies label-cuts within an attack-graph to automat-

ically identify a set of critical-attacks that, when blocked, renders the system secure. The

identification of a minimal label-cut is in general NP-complete, and in order to deal with

this computational complexity, we propose a linear complexity approximation utilizing the

Strongly-Connected-Components (SCCs) to identify a cut possessing a minimum number

of labels and representing a critical-attacks set. Also, we compare our proposed algorithm

to an exact minimum label-cut algorithm and to an approximation algorithm, both taken

from the literature and report the improvements.

The proposed approaches were tested on real-world case studies, including two IT net-

work systems and a SCADA network for a water treatment cyber-physical system.



www.manaraa.com

1

CHAPTER 1. INTRODUCTION

1.1 Background

SCADA/ICS are industrial systems that use control devices, network protocols, and

graphical user interfaces for gathering and analyzing real-time data. SCADA/ICS systems

are utilized to monitor and command a plant or other industrial equipment such as nuclear

plants, telecommunications, water and waste control, oil and gas refining, and energy. To-

day, since cloud computing and the Internet of Things (IoT) revolutions offer increasingly

rapid innovation, flexible resources, and help in lowering operating costs, SCADA/ICS are

transitioning to cloud computing and IoT to improve supervisory and control processes by

sharing real-time information among machines, manufacturing chains, suppliers, and cus-

tomers [2]. Since SCADA/ICS systems feature unique cyber and physical interaction and

were originally built as isolated systems, connecting them to the internet creates potential

security problems. This Thesis proposes solutions to secure SCADA/ICS systems.

Figure 1.1 shows a typical SCADA/ICS system network. Such a network can be divided

into three layers: the plant layer that consists of physical components such as machines,

sensors, and actuators; the SCADA layer that contains on-site supervisory systems and

Programmable Logic Controllers (PLC); the enterprise layer that represents remote access

devices [3].
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Figure 1.1: SCADA/ICS System

1.1.1 The SCADA/ICS Security Problem

Over the past few years, SCADA/ICS systems have been subjected to an increasing

number of major cyber-attacks such as Stuxnet, Shamoon, Dragonfly, and Night Dragon

[4]. Stuxnet was designed to compromise PLCs by modifying the behavior of centrifuges

used in the enrichment of uranium. It would first auto-execute itself on a USB drive, then

determine whether the target was running a Siemens PLC, and if so, it modified the PLC

control files and played a recorded measurement in a loop to avoid detection. Shamoon,

designed to erase computer hard drives, targeted energy companies in the Middle East. It

first created a system file to execute itself remotely, then collected files and overwrote them
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either with a JPEG image or 192KB blocks of random data. Finally, it reported back to a

command and control server. Dragonfly and Night Dragon were intended to target energy

suppliers and industrial processes to collect sensitive information [3]. Such nefarious efforts

have made it clear that SCADA/ICS systems need enhanced cybersecurity.

Enhancement of SCADA/ICS systems security can be achieved through improvement in

three main areas: Access control and encryption to prevent unauthorized access to system

resources, Vulnerability assessment and resolution for Identifying security vulnerabilities

and mitigate them before an actual attack occurs, and Intrusion detection and reconfigura-

tion that continually monitors system activities to detect suspicious behaviors and reorga-

nize the system if an attack is detected. Both Access control and Vulnerability assessment

must be performed during security system design of an SCADA/ICS system before an ac-

tual attack occurs, while Intrusion detection is an online monitoring activity. This thesis

will focus on Vulnerability assessment and resolution.

1.1.2 Differences between SCADA/ICS and IT

Since security problems in SCADA/ICS systems originate with the connection to the

internet and cloud computing, a reader may assume that an IT security solution is the only

thing required to secure SCADA/ICS systems. The truth is, while IT security may resolve

some aspects of a security problem, it usually will not be able to fully secure SCADA/ICS

systems due to differences between SCADA/ICS systems and IT systems [2, 5, 6].

The security goals of IT systems are confidentiality, integrity, and availability, with

confidentiality being the most important one. However, SCADA/ICS system goals could

be prioritized differently in a situation where a major disaster could happen if a system

component such as a controller becomes unavailable, possibly leading to serious injury or

damage to the environment. SCADA/ICS security is thus more concerned about 24/7

availability of all system components [5]. Software patching and frequent updates like those

used in IT are not suitable safeguards for SCADA/ICS systems. For example, upgrading
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an SCADA/ICS system will require a long planning time, and it is also difficult to suspend

operation of an industrial computer on a regular basis to install new security patches that

themselves may violate control logic [6]. For example, on March 7, 2008, A Georgia nuclear

power plant was accidentally shut down because a business network computer, the computer

used to monitor the plant’s chemical and diagnostic data, rebooted after a software update.

The data on the SCADA control system were reset when the computer rebooted, and the

resulting lack of data made the safety systems believe there was a drop in level in the water

reservoirs that cooled the plant’s radioactive nuclear fuel rods [7].

[5] argue that different layers in SCADA/ICS system can experience different types of

attacks and security solutions, since the communication protocols and the layers’ functions

are usually not the same those of IT. The Enterprise layer uses transmission control pro-

tocol/internet protocol (TCP/IP), so attacks occurring in this layer are the same as those

in the IT domain, even though some security details might be different. At this layer, the

industrial firewall is considered the prime security protection entity. Firewalls usually define

zones using rules to restrict accessibility to ports. Industrial firewalls are able to block all

inbound network traffic except that explicitly required by operations. The SCADA/ICS

layer is different from that for IT where communication protocols such as PROFINET and

POWERLINK are based on industrial Ethernet. The functions of this layer are configuring

control system parameters and monitoring the overall health of control systems, so security

at this layer will not be achieved by just applying IT security solutions; it should instead be

implemented to be consistent with the application characteristics. For example, an active

protection line of defense can be implemented to control what a user or a device can do

and what programs can be executed. The third layer, the control layer, includes numerous

types of communication protocols, like PROFIBUS, controller area network (CAN), RS485,

and industrial Ethernet. Since the physical layer is directly connected to the controllers,

the control layer directly affects the physical layer, and feedback from the physical layer

affects controller decisions. Security Measures must thus have strong adaptability to ensure
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a plant’s ability to continue operating safely even when an attack occurs. Finally, we must

consider the physical layer, where security issues can exist due to either direct or indirect

attacks. A direct attack is one that happens by physical contact, while an indirect attack

is one that can only be launched from the control layer because other layers have no direct

access.

Generally, while IT has developed a mature security technology and design principles

such as authentication, access control, message integrity, and separation of privilege that

may help guard SCADA/ICS systems against cyber-attacks, IT researchers have sometimes

not considered how attacks affect estimation and control algorithms and how they also

can affect the physical world. We argue that Studying SCADA/ICS security by itself as

a research problem can produce a better understanding of the consequences of an attack

on SCADA/ICS. This implies designing novel attack-detection algorithms to fit into the

SCADA/ICS domain and designing new attack-resilient algorithms and architectures more

suited to SCADA/ICS security.

In summary, the major differences between traditional IT security and SCADA/ICS

security are:

• Physical domain dynamics (such as sensor/ actuator/ plant behaviors) can be mon-

itored/ manipulated to bring down the system, a problem unique to SCADA/ICS

systems, since IT systems have no physical domain dynamics.

• Availability is crucial, because loss of availability has greater consequence in SCADA/ICS

systems than in typical IT systems, so the burden of ensuring security and resiliency

is higher, even though it is also a common concern with IT systems.

• Due to continuous dynamics, “patching” or “reconfiguration” can be a lot trickier

and must be more precisely described, e.g., when one switches a control policy, re-

places/adds sensors/actuators, etc., the switch might destabilize the underlying con-
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tinuous dynamics, so switching from one equilibrium condition to a subsequent equi-

librium condition must be navigated carefully while maintaining security.

• From the time of their inception, SCADA/ICS systems have been developed inde-

pendently of IT systems, so, except for the Enterprise Layer, SCADA/ICS systems

have evolved their own proprietary protocols such as PROFINET, PROFIBUS, CAN,

industrial Ethernet, etc., with their own specialized set of vulnerabilities and fixes,

making their security concerns different from the traditional IT systems.

1.2 Proposed Framework

We are proposing an SCADA/ICS security enhancement framework as a comprehensive

solution that covers all aspects of vulnerability assessment. The framework should analyze

SCADA/ICS systems, discover vulnerabilities, and introduce resolutions for them, hence

enhancing the security of the system. The proposed solution consists of three building

blocks: system component recognition, component vulnerability scan, global vulnerability

assessment, and vulnerability resolution, and developing these building blocks will require

solving some research problems associated with the intended functions. Figure 1.2 is a block

diagram of the proposed framework.
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Figure 1.2: Proposed Framework

System Components Recognition: Because of the way SCADA/ICS systems were

formerly designed, and because of the properties of some legacy systems, SCADA/ICS

network resources such as devices, connectivity, protocols, data, access controls, trust re-

lations, etc., have not always been fully known (For example, we might know a reserved

IP address but not the physical component to which it is connected), so when there is an

attempt to connect existing systems to the internet and to cloud computing, knowledge of

SCADA/ICS network resources is very difficult to achieve practically, because that would

require going through all documentation and connections. We propose an Automated Net-

work Device and Vulnerability Identification (ANDVI) approach to identify the unknown

devices’ types, manufacturers, and models. The algorithm uses the SCADA/ICS devices’s

communication-patterns to recognize the control hierarchy levels of the devices. In conjunc-

tion, certain distinguishable features in the communication-packets are used to recognize
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the device manufacturer, and model. We have implemented this hybrid approach in Python,

and tested on traffic data from a water treatment SCADA testbed in Singapore (iTrust).

In addition, we propose a Modbus-data analysis based passive fingerprinting approach to

identify SCADA/ICS unknown devices, allowing a smaller number of data collection points,

which further enhances the applicability of the proposed solution to real-world systems. The

Modbus-data analysis based approach was also implemented in Python and tested on data

from a water treatment SCADA system. Finally, our ANDVI implementation also maps

the identified devices to their known vulnerabilities.

Global Vulnerabilities Assessment: Securing Cyber-Physical systems (CPS), and

Internet of things (IoT) systems requires the identification of how interdependence among

existing atomic vulnerabilities may be exploited by an adversary to stitch together an attack

that can compromise the system. Therefore, accurate attack-graphs play a significant role

in systems security. A manual construction of the attack-graphs is tedious and error-prone,

this work proposes a model-checking based Automated Attack-Graph Generator and Vi-

sualizer (A2G2V). The proposed A2G2V algorithm uses existing model-checking tools, an

architecture description tool, and our own code to generate an attack-graph that enumer-

ates the set of all possible sequences in which atomic-level vulnerabilities can be exploited to

compromise system security. The architecture description tool captures a formal represen-

tation of the networked system, its atomic vulnerabilities, their pre- and post- conditions,

and security property of interest. A model-checker is employed to automatically identify

an attack sequence in form of a counterexample. Our own code integrated with the model-

checker parses the counterexamples, encodes those for specification relaxation, and iterates

until all attack sequences are revealed. Finally, a visualization tool has also been incorpo-

rated with A2G2V to generate a graphical representation of the generated attack-graph.

The results are illustrated through application to computer as well as control (SCADA)

networks.
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Vulnerability resolution: Use of attack-graphs has been proposed to represent com-

plex attacks scenarios, that exploit interdependence among the atomic component-/device-

level vulnerabilities to stitch together the attack-paths that might compromise a security

property at the system-level. While such analysis of attack scenarios enables security admin-

istrators to establish appropriate security measurements to secure their system, practical

considerations on time and cost can pose limit on their ability to address all system-level vul-

nerabilities at once. In this work, we propose an approach that identifies label-cuts within

an attack-graph to automatically identify a set of critical-attacks that, when blocked, ren-

ders the system secure. The identification of a minimal label-cut is in general NP-complete,

and in order to deal with this computational complexity, we propose a linear complexity

approximation utilizing the Strongly-Connected-Components (SCCs) of the given attack

graph to generate an abstracted version of the attack-graph, namely, a tree over the SCCs,

and next use an iterative backward search over this tree to identify set of backward reach-

able SCCs, along with their outgoing edges and their labels, to then identify a cut of the

tree, possessing a minimum number of labels and representing a critical-attacks set. We

also report the implementation and validation of the proposed algorithm on real-world case

studies, including two IT network systems and a SCADA network for a water treatment

cyber-physical system. We also compare our proposed algorithm to an exact minimum

label-cut algorithm and to an approximation algorithm, both taken from the literature and

report the improvements.

1.3 Literature Review

Many authors investigated the SCADA/ICS security problem. [8] introduce a risk assess-

ment framework designed for GPS-based railway SCADA systems. This framework applies

Hierarchical Holographic Modeling (HHM) where to identify risks it maps the Control Ob-

jectives for Information and Related Technology (CobiT) onto a holographic model. [9]



www.manaraa.com

10

suggest a vulnerability assessment methodology for SCADA systems based on professional

experience. [10] propose a methodology for quantitative estimation of cyber risk reduction

for SCADA system. To estimate such risk reduction, a cyber-attack directed graph is first

generated for both Improved and unimproved systems, followed by measuring and analyzing

the variation of time needed to compromise each system.[11] studied SCADA system inte-

grated risk assessment and probabilistic assessment in Energy Management Systems and

Management Information Systems. A scenario-based approach to vulnerability assessment

is used by the Control Systems Security Center (CSSC) for the National Cybersecurity Di-

vision of the Department of Homeland Security [12]. [13] introduced a method for SCADA

system security level qualitative assessment that helps managers make decisions about im-

plementing security countermeasures. [14] introduced a three Petri net model for quantifying

the risk of cyber-attacks on SCADA systems, aiming to identify all high-consequence attack

states.

[15] approach vulnerability assessment by developing an infrastructure hypergraph and

an evolution graph (a more detailed version of an attack graph. [16] introduced a Network

Security Risk Model, a directed graph representing an attack, whose goal is to aid in the

selection of risk management controls by providing a measure of risk and by calculating the

measure for a baseline and for a security improved system. [17] introduced the Adversary

View Security Evaluation (ADVISE) method that adds the characteristics of an adversary

to an attack graph. The purpose of that method is to identify the most likely attack path

by using an executable state-based security model to calculate an attack’s probability of

success. [18] proposed a SCADA security framework RAIM with a four-part network, in-

cluding real-time monitoring, anomaly detection, impact analysis, and mitigation strategies.

[19] suggested a cybersecurity risk assessment methodology that can be applied during the

process of instrumentation and control systems design in nuclear power plants. It outlines

the steps that should be followed to perform vulnerability assessment during both system

and component design and equipment supply. [20] proposed a Boolean logic Driven Markov
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Processes (BDMP) modeling approach that combines fault trees with Markov processes to

achieve both qualitative and quantitative vulnerability assessment. [21] suggested a Pha-

sor Measurement Unit (PMU) based on a risk assessment framework for SCADA systems

of power grids. It identifies and quantifies vulnerabilities within such systems using the

Duality Element Relative Fuzzy Evaluation Method (DERFEM), then generates an attack

graph that can be used to find intrusion scenarios. [22] discussed the application of game

theory to cybersecurity analysis of a smart grid SCADA system where they modeled the

attacker as a two-player, non-zero sum, noncooperative, sequential, and perfect information

game for the SCADA system administrator. [23] suggested a methodology for quantitative

assessment of vulnerability assessment in SCADA systems based on optimal power flow and

power flow tracing.

A limited number of studies exist that proposed approaches to identify the SCADA/ICS

components. [24] proposed identifying the devices based on specific SCADA protocol func-

tions (e.g., in Modbus protocol there is a function that returns the device information).

Such approaches are limited to the specific protocol used, and do not generalize. The

SCADA search engine Shadon [25], that can discover the devices connected to the inter-

net, has inspired works as [26] and [27] to use port scanning methods to identify SCADA

devices. However, these approaches employ active fingerprinting, and if applied without

proper study and preparation, can interrupt and even “freeze” some devices, as mentioned

earlier.

[28] proposed the use of TCP/IP information to construct a device fingerprint. [29]

generated a device fingerprint based on the response time. This approach is only device-

specific, and not device-model-specific, thus offering limited resolution of devices. [30]

identified the type of a device based on the SCADA/ICS communication-patterns, but is

limited to two layer systems. The SCADA/ICS device fingerprinting problem was also

considered in [31], where the author explored the existing approaches, without proposing a

new one; The paper concluded that current tools are not fully compatible with SCADA/ICS
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systems. [32] evaluated Shadon search engine and concluded that Shadon search engine can

be a threat to SCADA/ICS systems as it can identify Internet-facing industrial control

devices; The paper did propose a mitigation technique to protect from Shadon, and did not

propose a new device recognition tool.

Some authors focused on attack-graph generation to evaluate the SCADA/ICS system

vulnerability. [33] proposed a process calculus based model to generate a graph, by trans-

lating algebraic specifications into formulas, and next backward chaining those formulas

into a formula corresponding to the success of the attacker goal. [34] used logic program-

ming to construct attack-graphs. The logic reduction was applied starting from the primary

facts until reaching the objective facts. [35] used generalized stochastic Petri nets to model

intrusions into the control networks. [36, 37] constructed attack graphs using network con-

nectivity information where an attacker can reach the next desired system location from the

current system location if it is adjacent to it. This search strategy was applied recursively

until the entire attack graph was constructed. [38] used a multilevel Bayesian network to

construct an attack-graph by integrating knowledge of attacks, system functions, and haz-

ardous incidents. [39] proposed a layered search algorithm. The bottom layer represents the

attacker initial privileges. An upper layer represents new computed privileges after each iter-

ation. [40] proposed a “worst-case scenario attack-graph”. Each node represents a network

host, and the edges represent the atomic attack that an attacker can use to gain the highest

privilege on the next target node (the worst-case attack). [41] proposed reducing the search

complexity by constructing a reachability matrix using grouped reachability conditions. To

eliminate duplication, the algorithm uses pre-stored hashes. The author also proposed a

new attack-graph structure called multiple-prerequisite graphs, where nodes represent the

reachability conditions among network hosts. [42] proposed a bidirectional search method to

construct attack-graphs. The forward search starts from initial states, while the backward

search starts from the goal states. [43] introduces a parallel and distributed memory-based

algorithm that builds vulnerability-based attack graphs on a distributed multi-agent plat-
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form. These approaches work at certain levels of abstraction and may miss finer details of

how atomic attacks can be concatenated to compromise a system.

[44] considered a model-based approach for attack generation where it generates a sin-

gle attack path from a single reported counterexample. [45] introduced the model-based

approach to create an attack-graph for a networked system. The state space of the system

was formally modeled, using configuration parameters and attacker privileges. The state-

transitions represent the atomic attack actions. The approach in [45] is novel, yet limited

to the AG(safe) type security property, whose violation corresponds to the reachability

unsafe locations in the model. More general requirements, such as AG(p→ AXq) that are

violated by the reachability of certain paths (rather locations) can exist.

Finally, few Papers focused on Vulnerabilities resolutions using attack-graph analysis.

[46] showed the NP-completeness of finding the minimum critical-attacks set (equivalently,

the min Label-Cut, MLC) by reducing the minimum cover problem to it. [47] established

the NP-completeness by reducing the Hitting-Set problem to the MLC, and also presented

a greedy algorithm to the Hitting-Set problem that picks the elements with the highest hits

first. [48] showed that a relaxed version of MLC (one that seeks a certain approximation

to MLC) itself is NP-Complete. They proposed an approximation algorithm for finding a

solution to MLC within a factor of O(
√
n). [1] improved upon this work by proposing an

approximating solution to MLC within a factor of O(n2/3). Their approach computes the

minimum polytope corresponding to an “approximate” hitting set.

[49, 50] studied “minimum-cost network hardening” that is essentially a similar problem

of finding the minimum-costing hardening measures of network components, exploring their

dependency relations (as in case of an attack graph). [51] used generalized stochastic Petri

nets to quantitatively evaluate the control networks intrusions probability. [52, 53] proposed

the use of Google’s page-rank based approach for network security, in which the idea was

to successively remove the highest page-ranked nodes to maximally decrease the overall

connectivity. [54] proposed a genetic algorithm for finding a minimum cut set in AND/OR



www.manaraa.com

14

dependency attack-graphs, with the cut set representing a set of security countermeasures

that prevent attackers from exploiting the underlying vulnerabilities. [55] studied a related

problem of finding a minimum label spanning tree and a minimum label path, but those

do not necessarily induce a cut. [56] proposed an exact algorithm to compute a MLC for a

special case, where the graph is disjoint undirected graph with label frequency at most 2,

in polynomial complexity. The paper also proposed an approximation algorithm for a more

general undirected graph. However, since an attack-graph is a directed graph, the proposed

algorithms do not apply to them.

Examining the state of the art in vulnerability assessment reveals that further improve-

ment and research is required in areas such as overcoming cyber-attacks and failures, relia-

bility improvement, evaluation and validation, and tool support. Vulnerability assessment

is also missing a comprehensive method that would cover all stages of the risk management

process. In this thesis, we propose solutions and enhancements to fill this research gap in

the vulnerability assessment.

1.4 Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2 ANDVI: Automated Network Device and Vulnerability Identification in SCADA/ICS

by Passive Monitoring.

Chapter 3 A2G2V: Automatic Attack Graph Generation and Visualization and its Appli-

cations to Computer and SCADA Networks.

Chapter 4 Critical-Attacks Set Identification in Attack-Graphs for Computer and SCADA

Networks

Chapter 5 Summary and future work.
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CHAPTER 2. ANDVI: AUTOMATED NETWORK DEVICE AND

VULNERABILITY IDENTIFICATION IN SCADA/ICS BY PASSIVE

Monitoring

SCADA/ICS systems are installed by third party contractors, maintained by site engi-

neers, and operate for a long time. This makes tracing the documentation of the systems’

changes and updates challenging since some of their components’ information (type, man-

ufacturer, model, etc.) may not be up-to-date, leading to possibly unaccounted security

vulnerabilities in the systems.

To catch any existing vulnerabilities in an SCADA/ICS system, a complete understand-

ing of devices, practices, protocols, and applications must be established to be able to

enumerate the previously identified vulnerabilities for that set of components, and develop

the defenses against the potential attacks (such as providing patches to remove the existing

vulnerabilities). To develop such desired knowhow of a legacy system, one important pre-

requisite is the identification of the devices (e.g., Programmable Logic Controller (PLC),

Human Machine Interface (HMI)), protocols, and applications/services on the network.

This is also referred to as device fingerprinting, and if proper documentations were avail-

able, a simple solution could be to refer to those. However, per the DHS report on common

cybersecurity vulnerability in SCADA/ICS [57], it turns out that in many instances, the

documentation and implementation differ owing to the inadequately documented changes

and updates, rendering the referral to any such documentation erroneous/incomplete. This

situation is also encountered in traditional IT infrastructures, and a typical solution is to

resort to network fingerprinting techniques. This can be either active or passive fingerprint-

ing.
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Active fingerprinting attempts to identify the devices on the network by actively request-

ing information from the devices: For example it may send probing packets to an IP address

and analyze any response [58]. One may attempt to implement such an active approach

for an SCADA/ICS network, but it raises two concerning issues. Firstly, it may add to the

traffic load of the network, whereas most SCADA/ICS systems have congestion constraints

with strict latency requirements, and their violation may raise certain safety issues. Sec-

ondly, some legacy devices on an SCADA/ICS system are not designed to robustly support

any unsupported packets, and their introduction may set the device into an unpredictable

state. These concerns make the active fingerprenting for SCADA/ICS systems circumspect,

and so not preferred by SCADA/ICS users, as applying it requires further analysis to assess

the impacts on the systems.

Passive fingerprinting uses a network sniffer to capture traffic already generated by the

system devices, and analyzes this traffic to identify the devices. For passive fingerprinting

to function appropriately, it is pertinent to define the distinguishing features in the network

traffic to facilitate device identity. IT infrastructure network traffics have known distinguish-

able features that can be used to identify the network devices [31]. In an SCADA/ICS, a

network does not typically provide explicit signatures for a passive fingerprinting, as its

equipment are often simple and unable to offer extra-functional services. The passive fin-

gerprinting task can be approached by first inferring the device type, that can reduce the

amount of features needed to identify the devices in the network and thereby improve its

accuracy. We use the communications-pattern to first identify the device hierarchy level to

reveal its type, and next use the passive fingerprinting for an enhanced device recognition.

SCADA/ICS systems have specific network topology requirements, two of which are

very useful for our approach. (1) Each device is only allowed to communicate with pre-

programmed devices. (2) The devices follow a chain-of-command based communication-

pattern to prevent any command conflict. Such topological information about communi-

cation can be used to identify the control hierarchy level of a device within that chain-
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of-command, where the levels of the SCADA/ICS hierarchy help identify a device type

(SCADA station, HMI, PLC, etc.).

Accordingly, we introduce a two-step hybrid approach that uses both the communication-

patterns and device-fingerprints (constructed through passive fingerprinting techniques).

Our two-step algorithm first uses the network traffic to explore the SCADA/ICS communication-

patterns and identify the control hierarchy, and next a fingerprint for each device obtained

from its communication packets and is compared with the learned ones in the reference

database (explained in next sentence) to determine the exact model details of the device.

To learn the reference database, the traffic of a network with known devices is gathered

and analyzed to identify the device specific values in certain fields of the communication

packets.

We implemented this hybrid device recognition approach in Python, and tested it on

traffic data from a water treatment testbed, reported in [59]. Our reference fingerprint

database was constructed from the traffic data reported in [59, 60, 61]. [59] described a

water treatment system controlled by Allen Bradly PLCs, HMI, and SCADA station. [60]

presented a sub system consisting of Direct Logic 205, Siemens S7 1200, and a SCADA

station. [61] provided one-to-one communication between a SCADA station and Siemens

S7 1500, S7 1200, S7 300, and S7 400 PLCs. In other words, our reference dataset represents

a variety of SCADA/ICS devices from different vendors to be able to validate the generality

of our approach.

One of the challenges that any passive device fingerprinting faces is the number of

data collection points. Due to the hierarchical nature of the SCADA system, the devices

packet only exist between the parents/children devices, and do not extend beyond that

level. So, a data collection scheme needs to collect data for each device. In some SCADA

systems, routers exist to connect different children devices to their common parent, so a data

collection point between the router and the parent device can capture all the required data,

reducing the number of data collection points. For this a more in-depth packet inspection
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is required to fingerprint a device. We describe this for SCADA/ICS utilizing Modbus for

device communication, which is one of the most widely used application-layer protocol [62].

Nowadays, the Modbus protocol is integrated with the TCP/IP protocol, i.e., the Mod-

bus packets are encapsulated into the TCP/IP packets. Since the routers are not allowed

to modify the TCP/IP data, the Modbus messages are not affected when transmitted over

the network even if routers exist in the path between the source and the destination. Us-

ing this observation, in this work, we propose passive fingerprinting approach to identify

SCADA/ICS devices that utilize Modbus-protocol for communication. The fingerprints are

created by analyzing the Modbus messages and identifying the read/write register ranges

for the unknown devices, which is then compared to the fingerprints in a reference database.

SCADA/ICS device datasheets include a register map that identifies the read/write regis-

ters for each SCADA/ICS device, and so the reference fingerprints database can be created

directly from the manufacturers’ datasheets. We implemented this device recognition ap-

proach in Python, and tested it on traffic data from a water treatment SCADA system.

A final step in our work on Automated Network Device and Vulnerability Identification

(ANDVI) is the mapping of the discovered devices to their known vulnerabilities. To do this,

our tool extracts that information availability in Common Vulnerabilities and Exposures

(CVE) database and National Vulnerability Database (NVD). When combined with our

work on A2G2V (Automated Attack Graph Generation and Visualization) [63], this can

map device vulnerabilities to attack graphs of all ways a system-level security property of

interest may be compromised. Further, by integrating with our work on SCCiMLC (Strongly

Connected Component induced Min Label Cut) [64], a minimal set of vulnerabilities can

be identified whose mitigation renders the entire system secure. The main contributions of

the work presented here are:

1. To the best of our knowledge, for the first time, a hybrid communication-pattern and

passive fingerprinting approach is proposed to identify the SCADA/ICS devices’ type,

manufacturer, and model.
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2. To the best of our knowledge, for the first time, the SCADA/ICS communication-

pattern is used to identify the device control hierarchy level, and next use it to refine

the device type. The paper identified a set of features in the communication packets

that can be used to distinguish among the devices based on their control hierarchy

level.

3. We developed a software implementation for the proposed Hybrid approach, and re-

port its validation using data from a real-world water treatment CPS system from

iTrust [59].

4. To the best of our knowledge, for the first time, a passive fingerprinting approach

is proposed to identify the SCADA/ICS devices’ type, manufacturer, and model by

passive analysis of Modbus data by mapping out the read/write registers of the devices

and comparing those to a reference database.

5. We developed a software implementation of the Modbus-data analysis based approach,

and its validation using a water treatment CPS example.

6. We integrated our devices recognition algorithms with known vulnerabilities databases

to automatically identify the devices and their associated known vulnerabilities.
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2.1 Proposed Hybrid Approach to Device Recognition

Figure 2.1: Hybrid approach for devices recognition

Figure 2.1 depicts the architecture of the proposed hybrid approach for device recog-

nition in an SCADA/ICS network. The approach is based on the TCP/IP passive finger-

printing where the communication packets are captured for analysis and device recognition.

This is a two-stage process: the first stage is a learning stage where a reference fingerprints

database is created from an SCADA/ICS system containing a known set of devices, using

the identified values of certain features in the communication packets of the devices. Creat-

ing such a database requires identifying the reliable distinguishable features in the captured

TCP/IP packets that can be used to generate a distinguishable fingerprint for each device.

The second stage is a recognition stage where packets captured from a SCADA system with

unknown devices are processed, and passed into a two-step algorithm: a control hierarchy

identification step and a device fingerprinting step.

SCADA/ICS systems control hierarchy follows the standard architecture shown in Fig-

ure 2.2 [65]. The hierarchy is imposed to prevent conflicts in the control commands, re-

quiring each node in the system to communicate only with its direct parent, its immediate

children, or with nodes at the same level. This characteristic can be used to identify the

SCADA/ICS devices’ level using our control hierarchy identification algorithm (see Algo-
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rithm 1 in Section 2.1.2). Knowing the device control hierarchy level, allows us to infer the

device type (e.g., local controller level is a PLC, plant supervisory controller level is either

HMI or SCADA station, production coordinator controller level and control center level are

SCADA stations).

Figure 2.2: Standard SCADA/ICS control hierarchy

The above step of control hierarchy level identification is useful when SCADA/ICS

devices in the same system are from the same vendors and use same programmer protocols.

In such cases, different types of SCADA/ICS devices have similar TCP/IP communication

packet features (Section 2.1.1 gives an example of such a case), making it challenging to

distinguish devices based solely on communication packets. However, by first inferring their

control hierarchy, we can identify a device type (PLC vs. HMI), and this together with

the distinguishable features of the communications packets (the second step) then further

pinpoints the device.

The packet processing in the recognition stage is simply to extract the features from the

TCP/IP packets and store those into two matrices: Features1 and Features2. Features1

has two columns for each packet and the total number of rows equals the number of packets

captured. Column 1 records the source of the packet and column 2 records the destination.

Features2 has 3 columns for each packet captured, and again the total number of rows

is the number of packets captured. Each column records a distinguishable packet feature,
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described below. To be able to fully recognize all the devices, the captured packets need to

span all the devices in the SCADA/ICS network, and we assume that to be the case.

2.1.1 Learning Stage: Building Reference Database

The first stage in device recognition is to build a reference fingerprints database by

analyzing the captured packet from an SCADA/ICS network with known devices, and

identifying the values of certain features in the communication packets that are unique to

the devices. To identify such distinguishable features in the captured network traffic, we

examined data generated from several different SCADA/ICS devices Allen Bradley Logix

1765 PLC, Siemens S1200 PLC, Siemens S1500 PLC, Siemens S7 300 PLC, Siemens S7 400,

and DirectLogic 205 PLC, reported in [59, 61, 60]. We examined a total of 20 TCP/IP packet

features including: frame length, vendor MAC ID, TCP-segment length, IP identification

numbers, Total IP packet length, time to live, and tcp-window size. These 7 features have

been plotted below in Figure 3 to illustrate our fingerprinting approach. Among these 7

features 3 were found to be unique to a device. These 3 features are described in bit more

detail next.

When a packet is generated, the source of the packet specifies the duration a packet

remains valid, called time-to-live, and denoted (TTL). The TTL values for the packets

from the same source/model are always the same, and so serve as one distinguishing feature.

Another feature that a packet source specifies is the packet ID, that it increases in the same

fixed increments, and that increment amount is different for different source/model. Thirdly,

each generated packet also specifies the source MAC address, in which first four bytes form

the vendor ID. The vendor ID in the MAC address can be used to identify the device

manufacturer using the databases that enlist the devices’ vendors and their MAC vendor

IDs (for instance the OUI Lookup Tool from Wireshark [66]). Generally, vendors use more

than one MAC vendor ID, specific to a factory or manufacturing time period. This can

be used to further differentiate among the devices from the same vendor. An example for
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this is Siemens S1200 (by Siemens Numerical Control Ltd) versus S1500 (manufactured by

Siemens AG); S1200 MAC vendor ID is 001C06 while S1500 MAC vendor ID is 001B1B.

The analysis results of packet feature values for different packets, and of different devices,

are plotted in Figure 2.3, where each diagram is for a single device, and in each diagram,

the x-axis is discrete corresponding to the 7 features mentioned above, and the y-axis is

also discrete showing the values of the packet-features (encoded as numeric values). Eg,

packets from the device S7 1500 are plotted in the first diagram. It can be seen that

several of the SCADA/ICS packet features from a same device vary from packet-to-packet,

except for the 3 distinguishable features mentioned above that are constant, and turn out

to be adequate to differentiate among the 6 different PLCs. These 3 features are: Time To

Live (TTL), the difference in the IP.IDs of two consecutive packets (which we denote as,

IP.IDdiff ), and the vendor MAC ID (V endorMAC). Note given that TTL, V endorMAC ,

and IP.IDDiff can take 255 (1 byte), 4.294 × 109 (4 bytes), and 65.535 × 103 (2 bytes),

values respectively. Thus using these 3 features, one can potentially distinguish a total of

255× (4.294× 109)× (65.535× 103) = 7.176× 1016 number of devices.

Table 2.1 summarizes the results from our analysis of the communication packets and

consolidating those into the 3 distinguishing features TTL, IP.IDdiff , and V endorMAC ,

that can be used for look up to identify the device manufacturer and model. This table

reports the communications-pattern based reference database created during the learning

stage of our approach for identifying different SCADA/ICS devices.

Table 2.1: SCADA/ICS distinguishing features summary

SCADA/ICS device TTL IP.IDdiff V endorMAC

Logix 1765 PLC 64 256 001d9c

Direct Logic 205 32 1 00E062

S-1200 30 1 001C06

S-1500 30 1 001B1B

S7-300 30 1 000e8c

S7-400 128 3 000e8c
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Figure 2.3: PLCs data analysis

Note while the above 3 packet features are constant across the packets from the same

device, there can still exist more than one device with identical set of 3 features. An example

pair is the Logix 1765 PLC versus the Allen Bradly HMI; the two devices are identical with

respect to the aforementioned 3 TCP/IP features as shown in Figure 2.4. However, such

devices are not placed at the same control hierarchy, and so we use the extra information

about the control hierarchy to further pin-point a device.

Figure 2.4: Logix 1765 PLC and the Allen Bradly HMI data analysis
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2.1.2 Recognition Stage

This stage is used to recognize the unknown devices in a SCADA system by monitor-

ing the network communications packets in the run-time, by first deciphering the control

hierarchy, and next utilizing the packet features of Table 1 to identify the devices on the

network.

To maintain a high level of reliability and safety, the SCADA/ICS systems architecture

and communication follow the IEC 6113 [67] and the IEC 62264 [68] standards. Using such

standardized control hierarchy architecture as a basis, we identify the SCADA/ICS devices’

level as formulated in Algorithm 1 below.

The algorithm proceeds in bottom-up fashion, by identifying the bottom-most (also,

called level-0) devices of the control hierarchy, and once the devices of a level have been

identified, the devices of a next level can be identified as the destinations of the former. To

identify the level-0 devices, first the devices with identical destinations are grouped into a

same group. Then the level-0 devices correspond to the members of those groups whose

destinations are not larger than those of any other groups. Once the level-0 devices are

recognized, finding the higher levels is easier: Given level-k devices for some k ≥ 0, their

set of destination devices, that do not belong to any lower levels, form the level-(k + 1)

devices. The algorithm terminates when all the devices are already accounted for in one of

the levels.

Here we use the example in Figure 2.5 as a running example to illustrate these ideas.

Initially, using the Features1 data, that contains the list of all source-destination pairs, we

compute for each source node s, its set of destination devices Ds. In Figure 2.5 for example,

Ds1 = {s1, s2, s3, s6, s7}.
Next we identify the sources that are at the bottom of the control hierarchy. For this,

the sources with identical destinations are grouped together into their own single groups.

Then the sources in those groups are in the bottom of control hierarchy if their destinations

are no larger than those of any other groups. For example, since Ds1 = Ds3 , we group
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Figure 2.5: Control hierarchy identification example

those into the group, G1 = {s1, s3}. Similarly, G2 = {s2}, G3 = {s4, s5}, G4 = {s9},

etc. Next, the groups whose destinations are not larger than any of the other groups’

destinations are identified. So for example, the destinations of G1 and G2 are smaller than

those of group G5 = {s6, s7} whose destinations are Ds6 = Ds7 = {s1, s2, s3, s6, s7, s9},

whereas the destinations of G3 includes s8 that is not a destination for G1 or G2, etc.

Similarly, the destination of G3 namely, {s4, s5, s8}, are smaller than the destination of G6,

namely {s4, s5, s8, s9}, etc. With such grouping and destination comparison, the sources in

G1, G2, G3, are identified to be the lowest level groups in the control hierarchy, and this is

recorded in L0 = G1 ∪G2 ∪G3.

Once the level-k sources in Lk get recorded for any k ≥ 0, the level-(k + 1) sources in

Lk+1 are identified as the union of those groups which contain a destination of a level-k

source, and which do not belong to the level-k or lower. So for example, L1 = G5 ∪G6, and

next L2 = G4. The above steps are formalized in the following algorithm.

Once the control hierarchy levels have been identified using the above algorithm, the

TCP/IP packet features (TTL, IP.IDdiff , V endorMAC) stored in the Features2 dataset

are compared to the reference database to identify the device manufacturer and model.

It should be noted that, because of the hierarchical nature of the SCADA system dis-

cussed above, and since packets generated by the SCADA devices do not travel beyond

their parent node level, the data collection needs to be done between the parent/child hi-

erarchy level of each device, to ensure the inclusion of data from all system devices. This
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Algorithm 1 Control Hierarchy Identification Algorithm

1: Input: Set of packets

2: Output: sources S, control levels L, control level mapping C : S → L that

maps each source s ∈ S to its control level C(s) ∈ L.
3: main

4: for each source s, add it to a set S, and also construct its destination Ds

5: compare Ds for all s ∈ S
6: group sources with same destinations into groups Gi’s

7: ∀i : Gi ⊆ L0 if ∀j : Gj 6⊂ Gi

8: ∀i,∀k ≥ 0: Gi ⊆ Lk + 1 if (∃s ∈ Lk : Ds ⊆ Gi)∧(@l ≤ k : Gi ⊆ Ll)

9: Terminate when all s ∈ S are mapped to some level k ≥ 0.

also ensures that the data fingerprints we consider for device identification, namely, TTL,

IP.IDdiff , VendorMAC , do not undergo alteration in the network.

2.1.3 A CPS Case Study: iTrust Water Treatment SCADA

To demonstrate the applicability of our algorithm to a real-world cyber-physical system

(CPS), a water treatment system was chosen as a case-study (Figure 2.6). The system

is based on a fully-functional water treatment CPS testbed in the iTrust laboratory [59].

The system consists of Programmable Logic Controllers (PLCs), Human Machine Interfaces

(HMIs), Supervisory Control and Data Acquisition (SCADA) workstation, and a SCADA

Server. The 6 PLCs control the 6 stages of water treatment, while the HMI and the

SCADA station monitor and coordinate between the PLCs. The SCADA station reports

to and coordinates with the SCADA server. These devices and their control hierarchy are

shown in Figure 2.6.

The Secure Water Treatment testbed dataset comprises of data from 7 days of continuous

normal operation. For the device recognition purposes, only one full control cycle of data

is needed, and so for our purposes the network traffic for 4 hours of normal operation was

sufficient, and was analyzed. The information in the pcap captured files were extracted and

stored in CSV files using Tshark [69].
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Figure 2.6: Architecture of iTrust Water Treatment SCADA

Initially, a preprocessing step was applied to the collected packets to obtain the Features1

and Features2 matrices. The algorithm started by enumerating the set of sources S and

the destinations Ds for each source s ∈ S. 9 members were found as sources. Next, s =

192.168.1.10 was randomly selected, and its destination set was compared to the destina-

tions of other devices. As a result, 192.168.1.10, 192.168.1.20, 192.168.1.30, 192.168.1.40,

192.168.1.50, and 192.168.1.60 were grouped in G1. Next, s = 192.168.1.100 was se-

lected, and comparing its destinations to those of the other remaining devices resulted

in G2 = {192.168.1.200, 192.168.100}. Finaly, s = 192.168.1.201 was selected; it being the

last source in S, it was finalized that G3 = {192.168.1.201}. G1 is the only group that

does not contain the other groups as a subset, so L0 = G1. G2 contains the destination

for G1 devices, so L1 = G2. Similarly, G3 contains the destinations for G2 devices, and

so L2 = G3. At this point all sources in S have been mapped to a control level, so the

algorithm terminated. The result from our Python encoding of Algorithm 1 is shown in

Figure 2.7.

Based on the control hierarchy identification outcomes, the bottom level devices, 192.168.1.10,

192.168.1.20, 192.168.1.30, 192.168.1.40, 192.168.1.50, and 192.168.1.60 can be identified to

be PLCs. The level-1 devices, 192.168.1.100 and 192.168.1.201 can either be a SCADA
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Figure 2.7: iTrust Water Treatment SCADA control hierarchy identification output

station or a HMI device. Finally, the top level device, 192.168.1.200 is identified as a

SCADA station. Subsequently, the vendor ID was used to distinguish between the HMI

and the SCADA station: the vendor ID for both 192.168.1.201 and 192.168.1.200 were Mi-

crosoft, while the vendor ID for 192.168.1.100 was Rockwell Automation. Based on this,

192.168.1.201 and 192.168.1.200 were identified to be SCADA stations, while 192.168.1.100

was identified as an Allen Bradly HMI. The device fingerprinting step constructed a finger-

print for each PLC in the form of Feature2 matrix, which was then compared against the

lookup table (Table 2.1) to identify their manufacturer and model. This step then revealed

that the PLCs are the Allen Bradly Logix 1765 PLC. A log of these results is shown in

Figure 2.8.

Figure 2.8: Water Treatment SCADA device recognition output

2.1.4 Discussion

The experimental results from the hybrid device recognition algorithm show that it

can successfully identify the SCADA system devices type, manufacturer, and model. In

addition, its ability to map SCADA devices to their levels in control hierarchy helps improve

the passive fingerprinting accuracy, since this limits the search for an unknown device to

only those devices that are eligible to that level of hierarchy.
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The computational complexity of the algorithm is determined by the number of nodes

in the network (N) and has a worst-case running time of O(N3). Which is the maximum

time required to construct the system control hierarchy (list all nodes (N), identifying

their destination list Ds, and comparing Ds for all nodes). On a standard computer, Core

i5/2.2GHz/4GB RAM running Win 10, our algorithm took 15 seconds to identify the devices

for the above real-world case study.

2.2 Minimizing Data Collection Points: Role of Routers

As noted earlier, since the packets generated by the SCADA devices do not travel beyond

their parent node level, the data collection needs to be done between the parent/child

hierarchy level of each device. To understand the implication of this fact, consider the

two SCADA systems of Figure 2.9 and Figure 2.10. The one shown in Figure 2.9 is a

Siemens PLCs based system that controls a water treatment facility. Here the SCADA

system network is based on ring topology that does not require any routers. Figure 2.10 is

a Mitsubishi PLCs based system that controls an animal food manufacturing factory, and

uses routers. Note both systems are existing working systems in use.

Figure 2.9: Ring topology SCADA system architecture
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Examining the two systems reveals that the minimum number of data-collection points

needed in the ring topology to identify the system components (shown as orange stars) is

much less than in a router-based system ( total 15 vs. 31). Yet the latter type system

(with routers) is more common being cheaper (ring topology requires extra connections).

Motivated by this observation, we propose a passive fingerprinting approach that addition-

ally exploits the features of Modbus protocol, extensively used in SCADA/ICS networks

for communication among its devices, and thereby minimizes the number of data collec-

tion points, by collecting data at the routers (rather than at the devices). In Figure 2.10,

the minimum number of data-collection points needed to identify the devices are shown

as green stars ( total 31 as opposed to 11). The proposed Modbus-data analysis based

approach ensures that only the part of the data that is not affected by router actions is

examined for device fingerprinting (and so data can be collected at routers as opposed to

directly at devices).

Figure 2.10: Routers based SCADA system architecture

2.3 Modbus-data Analysis for Fingerprinting

Modbus TCP / IP (also known as Modbus-TCP) is a Modbus RTU protocol operating

on Ethernet with a TCP interface. i.e., the Modbus RTU message is transmitted with a
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TCP/IP wrapper, and sent over a network (rather over serial lines). Figure 2.11 demon-

strates how a Modbus message is embedded within a TCP/IP message.

Figure 2.11: Modbus RTU over TCP

Knowledge of how the Modbus messages are organized helps in analyzing their content.

For example, if the captured packet Modbus TCP/IP ADU = 0001 0000 0006 11 03 006B 0003,

then: Transaction ID= 0001, Protocol ID= 0000, Message Length= 0006 (6 bytes to fol-

low), Unit ID= 11, Function Code= 03, Unit ID= 11, Data Address of the first register

requested= 006B, and total number of registers requested= 0003. Such knowledge helps

identify the aspects of the Modbus-data that are not altered by router actions, for the

purposes of device fingerprinting.

2.3.1 Modbus-data based fingerprinting

A first step is to extract the Modbus TCP/IP ADU from a TCP/IP packet. Since we

know how the Modbus packet is embedded inside a TCP/IP packet, once we have captured

a packet, say using Wireshark, we can locate the Modbus packet and extract it. Figure 2.12

shows a captured Modbus TCP/IP packet example.

Following the Modbus-packet extraction, a next step is to identify the features withing

it to be able to use towards device fingerprinting. Our study of the Modbus protocol and

literature revealed that, while the range of registers that the protocol can read from or

write to is predefined in the protocol standards, upon studying and analyzing the Modbus-
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TCP datasheets from different SCADA/ICS vendors such as Siemens, Schneider, GE, ABB,

Wago, MegaTec, and Eaton Corporation we found that the register addresses that are

read/written by Modbus are different for different manufacturers, as was also noted in [70].

In practice, each I/O PLC module is mapped to a predefined specific range of registers

(by the manufacturer), e.g., GE Genius analog output registers are mapped from 401501

to 401900 [71], and Schneider ION7500/ION7600 analog output registers are mapped from

40011 to 40277 [72]. In Siemens s7 PLCs the user can optionally select a start and an end

address, and the programming portal configures the devices to fit those selected addresses to

registers between 40001 and 49999 (note the user selected addresses will not be the same as

the addresses of the actual registers; refer to [73] for more details). Since the programming

portal automatically links the SCADA devices to the Modbus registers, it adds an offset

between two consecutive devices, e.g., if the first device mapping begins at 40001 and ends

at 40100, the second device mapping will start at 40150 and ends at 40250. Since each device

behaves differently and uniquely based on its manufacturer’s setting, a device fingerprint

can be created for the unknown SCADA devices by monitoring the registers used by Modbus

protocol, then comparing those to devices’ reference database. We utilize this principle in

fingerprinting of devices connected to SCADA/ICS networks employing Modbus-protocol.
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Figure 2.12: Modbus TCP/IP packet example

Figure 2.13 depicts our proposed Modbus-data analysis based device fingerprinting ap-

proach, consisting of two stages: The first is an offline learning stage in which information

from SCADA devices manufacturer datasheets are used to create a reference fingerprint

database. The second stage is the online recognition stage that captures communication

packets from the network at each of the routers, extracts the relevant Modbus registers

information to create the fingerprints for the unknown devices, and finally compares the

created fingerprints to the fingerprints’ reference database, obtained during the learning

stage, to identify the devices.

Figure 2.13: Modbus-data analysis based devices recognition
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The above analysis can be augmented with control hierarchy information for a further

refinement/confirmation of fingerprinting. The Modbus protocol is a master-slave protocol

in which the master device sends requests to slave devices. Modbus exchanged messages

incorporate this information by specifying whether a device is a master or a slave. Thereby,

monitoring such a feature allows for the identification of control hierarchy. For example,

considering Figure 2.5 and monitoring the Modbus messages, indicates that {s1, s2, s3} are

slave PLCs for both s6 and s7, {s6, s7, s8} are slave PLCs for s9, and {s4, s5} are slave

PLCs for s8. Using this information, the devices are mapped into their control hierarchy in

a simple manner.

2.3.2 A CPS Case Study: S7-300 PLC SCADA

Figure 2.14: A simulated SCADA water treatment system

To validate the Modbus-data analysis based fingerprinting, we implemented a simulated

Siemens s7-300 SCADA system. To guarantee that the simulated system matches a real-

world one, we constructed it using “SIMATIC S7-PLCSIM” [74] that allows users to create

virtual Siemens PLCs to perform a comprehensive simulation (that is used by developers to

validate their design prior to commissioning). S7-PLCSIM simulates a single PLC at a time,

and so we also used “NetToPLCsim” [75] that allows network communication with the S7-
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PLCSIM based virtual PLC, using the network interface of the PC on which the S7-PLCSIM

is running. Using these tools, allowed us to create a realistic simulated control system that

generates real data. We created a simulated system with the control architecture shown in

Figure 2.14, that consists of 4 s7-300 PLCs, one master PLC, three slave PLCs, and one

control room station. “NetToPLCsim” mimic routers to simulate the network.

We implemented the proposed Modbus-data analysis based fingerprinting approach in a

Python tool, and tested it on the collected data. The tool successfully identified the PLCs

as Siemens s7-300 PLCs, and also successfully identified the system control hierarchy. The

collection points were placed at the routers (as opposed to at devices), validating that the

Modbus-data analysis based fingerprinting approach worked with a minimal number of data

collection points (2 as opposed to 4).

2.3.3 Discussion

The experimental results of the proposed Modbus-data analysis based device recognition

confirmed that it could successfully identify the SCADA system control hierarchy and sys-

tem devices type, manufacturer, and model. On a standard computer, Core i5/2.2GHz/4GB

RAM running Win 10, our algorithm took 12 seconds to identify the devices of the case

study.

The fact that, the proposed Modbus-data analysis based fingerprinting approach is not

affected by router actions on data, reduced the number of data collection points needed to

identify unknown devices. For example, in the simulated water treatment SCADA system,

only two collection points were needed, while 4 data collection points exists at the 4 devices.

While the Modbus-protocol is one of the most commonly used protocols in SCADA systems,

there are real-world examples, like the water treatment CPS from iTrust, that do not employ

Modbus. In those cases, our earlier hybrid approach works, except additional effort is need

in data collection at all the devices (as opposed to at all the routers).



www.manaraa.com

37

2.3.4 Automated Network Device and Vulnerability Identification (ANDVI)

Tool

Once the SCADA/ICS devices have been identified, their potential known vulnerabilities

can also be automatically mapped out by a look-up to trusted and up-to-date databases.

The two most trusted vulnerabilities databases are the Common Vulnerabilities and Expo-

sures (CVE) database and the National Vulnerability Database (NVD). CVE is a database

of known security threats, sponsored by the United States Department of Homeland Secu-

rity. NVD is a U.S. government repository of standards-based vulnerabilities that include

databases of security checklist references, security-related software flaws, misconfigurations,

product names, and impact metrics. The information provided by these two databases can

be integrated with our devices recognition algorithms to automatically identify the system

devices and their associated known vulnerabilities. To do this end, our ANDVI tool (its

architecture shown in Figure 2.15) takes the output from either of the two device identifica-

tion approaches, and matches the discovered devices to their known vulnerabilities listed in

the CVE database, and then uses the NVD database to rank those vulnerabilities according

to their NVD threat index values.

Figure 2.15: Automated Network Device and Vulnerability Identification (ANDVI)

framework
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CHAPTER 3. A2G2V: AUTOMATIC ATTACK GRAPH

GENERATION AND VISUALIZATION AND ITS APPLICATIONS

TO COMPUTER AND SCADA NETWORKS

Attack-graphs are graphical data structures representing all attack scenarios, in the form

of sequences of atomic attacks, that an attacker can pursue to compromise a system [76].

Once an attack-graph has been generated for a system, it can be used in understanding

the complex system-level vulnerabilities derivable from the atomic component level ones,

and thereby in system-level security risk assessment. Note vulnerability assessment is an

important research field of its own, and the interested readers may refer to [77, 78, 79]

for details. Traditionally, attack-graphs are generated manually by a team of experts that

analyze the system, but this is tedious and time-consuming, and subject to being error-

prone and incomplete. Therefore, an approach that is based on a complete and accurate

model and that is automated in generating the attack graph is highly desired.

The existing research on attack-graph generation is “non-model-based” and hence can-

not be automated (see Section 1.3); the only exception being [45]. Similar to the work in [45],

our attack graph generation algorithm is model-based, i.e., it utilizes a formal description

of the system model (describing architecture and connectivity, components and behaviors,

assets, defenses, vulnerabilities, and atomic attacks), as well as of the system-level security

properties of interest, along with defining the associated state-space of interest and specify-

ing how that evolves when atomic-attack actions of interest occur, to enable the automatic

computing the associated attack-graph. The limitation of [45] is that it is restricted to those

security properties whose violation corresponds to the reachability of unsafe locations in the
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model. Our approach enables the generation of an attack-graph for any security property

of interest, including those that may be violated by executing an acyclic path, rather only

by reaching a location.

We present an augmentation of a model-checker for state-space exploration to find all

those acyclic counterexample-paths where the given specified security properties are vio-

lated. A model-checker in general only produces a single counterexample, and if executed

more than once, it may reproduce the same counterexample. Our algorithm ensures that

a distinct counterexample is generated each time a model-checker is called. To ensure that

the same counterexample is not repeated, our A2G2V implementation iteratively relaxes

the existing specification by disjuncting it with the encoding of the latest counterexam-

ple [80, 81]. This ensures that the latest counterexample ends up satisfying the relaxed

specification and can no longer act as a counterexample.

Our C-program based A2G2V tool takes as input the system architecture and the atomic

attack behaviors as captured in Architecture Analysis and Design Language (AADL) [82]

and its AGREE Annex. The AADL description is used to formally represent the underlying

networked-system, whereas its atomic vulnerabilities, their pre- and post- conditions, and

security property of interest using the AGREE [83] Annex. The AADL+AGREE model is

then translates into its Lustre equivalent, to enable further analysis using the model-checker

JKind [84]. The A2G2V tool calls the JKind model-checker iteratively, each time with a

newly relaxed specification, to generate a new attack sequence in each iteration in the form

of a new counterexample. Further, the Graphviz tool has also been integrated into A2G2V

for the visualization of the generated attack graph (see Figure 3.3 in Section 3.2).

The proposed algorithm was tested on two computer network examples and one CPS

example: A three hosts network from [45, 47], an extended five hosts network, and a water

treatment CPS. For the second example, we consider a more general security property

which involves the reachability of a certain path rather than just a location. (Such a case

for example cannot be handled in the prior works [45, 47].)
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The main contributions of the work presented here are:

1. A model-based automated attack graph generator by way of automated generation of

all acyclic counterexamples of a model; this requires relaxing the specification with

the encoding of the earlier counterexamples so distinct counterexamples are found in

each iteration.

2. The approach supports general security properties and not just those represented as

reachability of certain unsafe states.

3. C-program based implementation A2G2V of our algorithm that interfaces with AGREE

(for AADL and Annex based modeling and its Lustre translation), iteratively with

JKind (for generation of all acyclic counterexamples), and further integration with

Graphviz for visualization of the set of all attack sequences in a graph form.

4. A water treatment CPS and two IT network examples for illustrating the above steps.

3.1 Computer Network Illustrations and their Model Formulation

As a concrete example to illustrate the problem of attack-graph generation, we adapt

the networked-system example from [47, 45] shown in Figure 3.1.

Figure 3.1: Three Hosts Network Example.

The network has three hosts: host-0, where the attacker is located, whereas host-1 and

host-2 are the two target hosts. Host-1 runs ftp and sshd, while host-2 is running database
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and ftp. Also, there exists a firewall separating the targets from the rest of the internet. An

IDS (intrusion detection system) supervises the network traffic between the network hosts

and the outside sources. The firewall does not place any access control restrictions on the

flow of network traffic, rather lets the IDS monitor the traffic flow between (host-0; host-1)

and (host-0; host-2), but not between (host-1; host-2). For an atomic-attack (see their list

below) that is detectable, the IDS triggers an alarm upon its detection, while a stealthy

attack remains undetected. Owing to the aforementioned services running on the two hosts,

there exists these three vulnerabilities:

1. wdir: a writable ftp home directory; this vulnerability is exploitable by an ftp rhosts

attack on hosts 1 and 2, running the ftp service.

2. fshell: an executable command shell assigned to the ftp user name; this vulnerability

is also exploitable by an ftp rhosts attack on hosts 1 and 2, running the ftp service.

3. xterm: the xterm is vulnerable to a buffer overflow attack on host 1 running the ftp

and sshd services, and host 2 running ftp service.

The aforementioned vulnerabilities can be exploited resulting in the following atomic

attacks:

1. sshd buffer overflow (sbo): This attack exploits the xterm vulnerability, giving the

attacker root access to the victim host. This attack can be either stealthy or detectable

by the IDS.

2. ftp rhosts (ftpr): This attack uses wdir vulnerability or the fshell vulnerability where

the attacker establishes a remote login trust by creating a .rhosts file in the ftp home

directory. This is an stealthy attack that the IDS is unable to detect.

3. remote login (rlog): This attack uses an existing trust relationship between two hosts

gained by executing ftpr attack. The attacker logs into one host from another and

gets user access even without a password. This attack is detectable by the IDS.
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4. local buffer overflow (lbo): This attack also exploits the xterm vulnerability to gain

access to the setuid root file to give the attacker root access to a local host. This

attack is stealthy, and not detectable by the IDS.

To illustrate the capability of our approach in generating attack-graphs for complex and

general security properties such as AG(p → AFq), we expanded the above example to a

5-host system of Figure 3.2. Here host-3 and host-4 are additional target hosts. These two

hosts are running ftp and sshd services as in the case of host-1, and hence have the same

vulnerabilities as host-1. As a result, this system then has eight possible atomic attacks.

As before, the firewall does not place any access control restrictions on the flow of network

traffic rather only on monitoring: the traffic flows between (host-0; host-1), (host-0; host-2),

(host-0; host-3), and (host-0; host-4) are monitored by the IDS, while those among (host-1;

host-2; host-3; host-4) are not monitored.

Figure 3.2: Five Hosts Network Example.

3.1.1 Model Formulations of Computer Networks

Following presents the formal description of the three host system of Figure 1.

1. Set of hosts H = 0, 1, 2; variable i ∈ {0, 1, 2} (static parameters).

2. System connectivity, C ⊆ H × H ; Boolean cij = 1 iff host i connected to host j

(static parameters).
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3. System services S; Boolean si = 1 iff service s ∈ {ftp, sshd, data} is running on host

i (dynamic variables).

4. System vulnerabilities V ; Boolean vi = 1 iff vulnerability v ∈ {dir, fshell, xtermg}

exists on host i (static parameters).

5. Attack instances AI ⊆ A ×H ×H; labeled aij ≡ attack a from source i to target j,

a ∈ {sbo, ftpr, rlog, lbog}, sbo := sshd buffer overflow, ftpr := ftp rhosts, rlog :=

remote login, lbo := local buffer overflow (static parameters).

6. Trust relation T ⊆ H ×H ; Boolean tij = 1 iff i is trusted by j (dynamic variables)

7. Attacker level of privilege L on host i; variable li ∈ {none, user, root} (dynamic

variables).

8. Intrusion detection system IDS : A×H×H → {0, 1}; Boolean ids(aij) = 1 iff attack

a from source i to target j is detectable (static parameters).

9. A global Boolean dg tracks whether an IDS alarm has been triggered for any previ-

ously executed atomic attack (dynamic variable).

10. Attack pre-conditions:

• Pre(sboij) ≡ cij = 1 ∧ (li > user) ∧ (lj < root) ∧ (sshdj = 1)

• Pre(ftprij) ≡ cij = 1 ∧ (li > user) ∧ (∃k ∈ H : tkj = 0) ∧ (ftpj = 1) ∧ (wdirj =

1 ∧ fshellj = 1)

• Pre(rlogij) ≡ cij = 1 ∧ (li > user) ∧ (lj = none) ∧ (tij = 1)

• Pre(lboij) ≡ cij = 1 ∧ (lj = user) ∧ (xtermj = 1)

11. Attack post-conditions:

• post(sboij) ≡ (lj = root) ∧ (sshdj = 0) ∧ ((i = dg = 0)⇒ (dg = 0)(dg = 1))

• post(ftprij) ≡ (∀k ∈ H : tkj = 1)
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• post(rlogij) ≡ (lj = user) ∧ (i = 0⇒ dg = 1)

• post(lboij) ≡ (lj = root)

12. Intial states : l0 = root ∧ (l1 = l2 = none) ∧ (∀ij ∈ H ×H : tij = 0) ∧ (ftp1 = ftp2 =

sshd1 = data2 = 1) ∧ dg = 0

(Initially, the attacker has root privilege on host-0 and no privilege on other hosts,

none of the hosts trust each other, ftp is running on host-1 and host-2, sshd on host-1,

database on host-2, and IDS has not detected security violation.)

13. The security property φ is violated if the attacker has privilege level below root on

host-2 and it remains undetected by the IDS. This can then be described by a Com-

putational Tree Logic (CTL) formula:

¬φ ≡ AG(l2 = root ∧ dg = 0).

Here “AG” stands for “All paths Globally at all states”. The property reads as, “for

all paths, globally at all states, either attacker’s privilege level on host-2 is below root, or

this gets detected”. The 5-host system’s formal description is an expansion of the 3-host

system’s formal description; host-1, host-3, and host-4 are equivalent to host-1 in the 3-host

system, so they retain similar formal descriptions. Host-0, host-2, and the IDS maintain

the same functionality as the 3-host system, so they retain the same formal description as

in the 3-host system. Therefore, the above formal description, with the slight modification

to include host-3 and host-4, applies to the 5-host system. For the 5-host system, the

security property is violated if the attacker is able to get root access on host-2 only after

compromising host-3, and while remaining undetected, i.e.,

¬φ ≡ AG((l3 ≥ 1)→ AF (l2 = root ∧ dg = 0)).

Here ”AG” stands for ”All paths Globally at all states” and ”AF” stands for ”All paths

in a Future state”. The property reads as, ”for all paths, globally at all states, if attacker’s

privilege level on host-3 is root, then for all paths (originating from that state) in a future

state, attacker privilege level on host-2 is root, and this remains undetected”.



www.manaraa.com

45

3.2 Model-based Attack Graph Formulation, Generation, and

Illustration

The model-based approach to attack graph generation requires a formal security model

of the overall system, and a system-level security property of interest. Using these, the

associated attack-paths and the attack-graph is obtained in automated fashion using our

algorithm. To begin, we formally define a system security model, an attack path, and an

attack graph.

Definition 1 A system security model (M = (S,E, s0)) is a state-transition diagram whose

locations S, with s0 ∈ S denoting an initial location, capture the security status of the system

(e.g., which host is running which service, what the attacker’s access privilege level is at

each host, what the trust level is among each pair of hosts, and what the detection status

is of security violation), and whose transitions E describe how the atomic attack actions

cause an update in the system security status. In general, the transitions are guarded by

pre-conditions on state-variables, and their execution entails certain post-conditions on the

same state-variables.

To construct the system security model one needs a complete system description; its

components and connectivity; their assets, services, and vulnerabilities; the atomic attack

actions that exploit those vulnerabilities; their pre- and post- conditions; and also their

detectability by an IDS. The execution of a sequence of state transitions (namely, atomic

attacks) in M can result in the violation of a security property φ, expressed in a suitable

temporal logic.

Definition 2 Given a security model M and a security property φ of interest, an Attack

Path (AP ) is a finite acyclic path of a sequence of states in M , AP = (s0, s1 · · · sf ), where

s0 is an initial state in M , while any two adjacent states in the path belong to the transition

set E, such that the execution of AP leads to the violation of φ.
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Definition 3 An Attack-Graph (AG) is a data structure representing a union of all attack

paths

AG = {APi| APi is an attack path in M}.

3.2.1 Automated Attack Graph Generation and Visualization

Our A2G2V (Automated Attack Graph Generation and Visualization) approach is based

on extension of model-checking. Model-checking is a tool for verifying if a system model

M fulfills a certain temporal logic property φ of interest. If the property is not satisfied by

some runs of M , then a model-checker reports an offending run as a counterexample.

Algorithm 2 A2G2V: Automated Attack Graph Generator and Visualizer

Input: AADL+AGREE model (M)

Output: Attack Graph (AG)

procedure

Translate AADL Model (M) to Lustre Model (Ml) % Using AGREE ; set φ0 = φ

Generate attack path AP % Using JKind find the counterexample that violate φ

loop 1

if AP is Cyclic then

K = K − 1

generate AP

goto loop 1

if AP is Acyclic then

K = |AP | % | · | computes the length of its argument

loop 2

generate APi

if new attack-path then % if all APs of length 6 K are not yet enumerated

φi+1 = φi ∨APi

Add APi to AG

goto loop 2

else % if all APs of length 6 K have been enumerated

K = K + 1

generate AP

if AP is Acyclic then

goto loop 2

else

return AG

generate graphical AG using Graphviz
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In our work, the system description of components and their interfaces and connections

is first captured using Architecture Analysis and Design Language (AADL) [82], within

the open-source environment (Osate2) [85]. Osate2 is an upgraded Eclipse-based platform,

an open-source Integrated Development Environment (IDE). Osate2 extends the Eclipse

platform with textual and graphical editors for AADL, and supports Extensible Markup

Language (XML) based interchange format for AADL, based on its metamodel specification.

Within an AADL architecture level model, the system components can be added graphically,

and also extensions can be introduced through Annexes, that can offer new categories of

model elements such as behaviors and properties of the components. In our case, we use the

AGREE Annex developed by Rockwell [83] to specify the component models, and system-

level security properties.

AGREE also translates the AADL+Annex models and properties to Lustre, and inter-

acts with JKind (a model-checker for Lustre models) for correctness verification. AGREE

can only be run from the OSATE2 GUI and does not support command line instructions,

and cannot be called iteratively for the generation of more than one counterexamples, with-

out possibly redesigning the AGREE’s source code. So we developed our own C-based

implementation, A2G2V, that takes the Lustre output from AGREE and iteratively inter-

acts with JKind to generate the attack-sequences one after another. Figure 3.3 shows the

proposed algorithm architecture.
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Figure 3.3: A2G2V Algorithm Architecture.

The approach behind our main algorithm A2G2V [Algorithm 2] is as follows. User inputs

the system description in AADL+Annex using the AGREE front end. This is translated

into Lustre by AGREE and fed to A2G2V in form of a security model M and system-level

security property φ. If M complies with the given security property φ, JKind reports that

φ is satisfied. If M violates φ, then JKind reports a counterexample representing a state

transition path of concatenated atomic attacks (namely, the transitions in E) that the sys-

tem follows to violate φ. Note once an attacker has compromised the system through a

sequence of atomic attacks, it need not launch additional atomic attacks. Thus, without

loss of generality, all attack-paths are acyclic. Since we are only interested in acyclic coun-

terexample paths, the length of an attack-path is upper-bounded by the ”depth” (i.e., the

length of the maximum acyclic path) of system model M .

This upper-bound however is not known a priori, and so requires an iterative exploration.

In our case, JKind uses Bounded Model Checking (BMC) for verification: It searches for

counterexamples is of length bounded to a search-depth, with a default initial value of K =

200. Note this default value does not affect the end result: If a smaller length counterexam-

ple exists or the system is shown to be safe using the default induction depth of K = 200,

then K = 200 is already a workable choice. If K = 200 induction-depth is inconclusive, then
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JKind automatically increases K incrementally until it finds a counterexample or concludes

that the system is safe.

From JKind’s first run, if no counterexample is found, then the attack-graph is simply an

empty graph. On the other hand, if the first reported AP is cyclic, then A2G2V decreases K

by 1 and re-runs the model-checker JKind. It repeats this step until finding an acyclic AP .

(Note this task of finding an acyclic path by iteratively decrementing the search-depth can

be skipped if an acyclic path is found in the first iteration.) At this point, A2G2V sets k to be

the length of that AP . Then it enumerates all the attack-paths of length 6 K by iteratively

disjuncting the reported APi to the security property as follows: φ0 := φ; φi+1 := φi∨APi,

and then re-runs the model-checker JKind. After enumerating all attack-paths of length

6 K, JKind increments the search-depth K by 1 and re-runs the algorithm. This process

is repeated until reaching a K that reports a cyclic AP , meaning that the model-depth

has been exceeded. (Note this task of finding a cyclic path by iteratively incrementing the

search-depth can be skipped if a cyclic path is found in the first iteration.) The next step is

to pass the union of the reported acyclic attack-paths to Graphviz to generate a graphical

visualization of the corresponding attack-graph.

Note the soundness of Algorithm 1 follows from the fact that the algorithm generates

only the counterexamples, whereas its completeness follows from the fact that it generates

all the acyclic counterexamples, which is a finite set since the model itself has a finite state-

space, with finite number of dynamic state-variables, each taking finitely many values. Also

as a result, the termination is guaranteed since the search is only over the acyclic paths,

which is a finite set. Implementing the A2G2V tool required building three main functions:

a counterexample parsing function, a cyclic testing function, and a Luster model editing

function. The counterexample parsing function extracts the generated counterexamples

from the JKind output. The cyclic testing function tests if the generated counterexample

is cyclic or acyclic. The model editing function transfers the counterexample into its luster

representation, by first encoding it in the Luster syntax, and next disjuncting the encoded
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counterexample with the property being model-checked. The main program coordinates

among the three functions to execute the algorithm described above.

The number of pre-/post-conditions is linear in the number of atomic attacks and the

dynamic state-variables. Also, in general, the computation complexity is determined by

the size of the model and the length of the property. For the class of so called CTL

(Computational Tree Logic) properties, the complexity is known to be polynomial in the

size of the model and the length of the security property [86]. The model-checking has gained

tremendous industrial adoption for safety critical applications, owing to its applicability to

practical sized-systems.

3.2.2 Computer Network based Illustration of A2G2V

The computer network examples presented in Section 3.1.1 were first encoded in AADL+AGREE

Annex. The AADL description formally captured the architectural description of the com-

puter networked systems: their components and their connectivitiy. The information about

their behaviors: their dynamic state variables, the pre- and post-conditoins of the atomic

attacks, and the security properties of interest were encoded in the AGREE Annex. These

were translated to Lustre using AGREE to obtain the system security model M , which was

then fed to our A2G2V tool for the atack-graph generation and visualization.

For the 3-host system of Figure 3.3, the model M consists of a total of 57× 106 states

and 3.2 × 1015 transitions, whereas the 5-host system of Figure 3.2, there are 1.4 × 1017

states and 1.8× 1034 transitions in its model M .

For the 3-host system, the goal of the attacker is to gain access to the database on

host-2, for which the attacker needs to gain root access to host-2 without being detected

by the IDS. Hence, the property φ that should not be violated is that either the attacker

never gains root access to host-2 or it gets be detected by the IDS.

Table 3.1 summarizes the A2G2V algorithm search results for enumerating the attack-

paths, and the search depth (or path-length), denoted K, in the 3-host network. In the



www.manaraa.com

51

first iteration, the A2G2V set K to 200, and found an acyclic 4 steps attack-path. A2G2V

used K = 4 and iterated until no new 4 steps attack-path could be found, resulting in 10

different attack-paths. Next, K was incremented to 5 and all attack-paths of length 5 were

generated (57 new attack-path were found). Finally, A2G2V incremented K to 6, but that

resulted in a cyclic attack-path. A2G2V then terminated the attack-path search.

Table 3.1: 3-hosts Network Attack Graph Search Summary

K Generated paths information Next K

200 (default) A 4-step acyclic attack-path K=4

4 10 acyclic attack-paths K=5

5 57 acyclic attack-paths K=6

6 A cyclic attack-path generated Terminate A2G2V

Note due to a feature of the model-checker when searching for a counterxample of a

certain length, the lower length counterexamples are also explored, and this causes the

model-checker to duplicate the counterexamples (so for example when searching for K =

5, a K = 4 counterexample is generated for a second time). Table 3.1 reports all such

results. However, our graph visualizer parses all attack-paths and automatically removes

the duplicates. This can be seen from the generated attack graphs (Figures 3.4, 3.6 and 3.8).

Figure 3.4 depicts the attack-graph generated by the A2G2V algorithm for this property.

Each node describes the attacker privileges and the trust relationships between the network

hosts at that step. Each transition represents an atomic-attack.

Any path from the initial node to the final node represents a sequence of atomic-attacks

that the attacker can use to attain its goal without being detected. For example, the path

highlighted in the red has the following atomic-attacks: ftp-02 establishes trust between

host-0 and host-2, sbo-01 gives the attacker root access to host-1, rlog-12 gives the attacker

user access to host-2, lbo-02 gives the attacker root access to host-2, and finally ftp-01
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Figure 3.4: A2G2V generated attack-graph for 3-hosts network

establishes trust between host-1 and host-2. Figure 3.5 shows the JKind reported coun-

terexample for this path, and how the A2G2V algorithm encodes it and disjuncts it with

the security property within the Lustre file automatically.

We also applied A2G2V to the five hosts system, with a more general security property

that we introduce earlier, and is being repeated here:

¬φ = AG((l3 ≥ 1)→ AF (l2 = root ∧ dg = 0)).

This property represents all attack scenarios that an attacker may take to compromise

host-3 first, and later compromise host-2, without being detected.

The A2G2V algorithm started at default K value of 200. The first iteration generated

an acyclic 4 steps attack-path. So K was set to 4 and A2G2V generated all attack-paths
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Figure 3.5: A counterexample from JKind output automatically encoded, and disjuncted
with security property in Lustre

of length 4, a total of 59 different attack-paths. K was then incremented to 5, generating

150 different attack-paths. A2G2V then incremented K to 6, but that generated a cyclic

attack-path, terminating the search for the attack-paths. Table 3.2 summarizes this process,

while the set of all attack-paths is depicted in graphical form in Figure 3.6. This graphical

depiction is also automatically obtained using A2G2V.

Table 3.2: 5-hosts Network Attack Graph Search Summary

K Generated paths information Next K

200 (default) A 4-step acyclic attack-path K=4

4 59 acyclic attack-paths K=5

5 150 acyclic attack-paths K=6

6 A cyclic attack-path generated Terminate A2G2V
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3.2.3 Discussions

The experimental results for the A2G2V algorithm show that it could successfully gen-

erated attack-graphs in an automated fashion for the computer networks. Such an attack-

graph can be used to analyze the security of the system. For example, it can be seen from

Figure 3.4 that rlog-12 attack is common to most of the attack paths, so if the resources can

be used to mitigate this attack, then the security of the networked-system will hugely im-

prove. Figure 3.6 shows how an attacker can compromise the system through host-3. Such

analysis can be helpful in the design-phase where the systems administrators can introduce

appropriate security measures to improve the system-level security.

Figure 3.6: A2G2V generated Attack-graph for 5-hosts network
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On a standard computer, Core i5/2.2GHz/4GB RAM running Win 10, our algorithm

took 2 hours and 15 mins to construct an attack-graph for the 5 host network with safety

type security property (that is violated by reachability of certain locations). For the more

general “temporal” security property, that is violated by the reachability of certain paths

(rather locations), our algorithm generated the attack-graph in 15 mins for the 5-host

network. While [45] can also generate the attack graph for a safety property, it does not

have the capability to generate the attack graph for the more general temporal security

properties. Ours is the first algorithm to do so. Also, note that the algorithm in [44] does

not generate an attack-graph, rather only a single attack-path.

3.3 A CPS Case Study: Water Treatment CPS

To demonstrate the applicability of our A2G2V algorithm to a real-world cyber-physical

system, a water treatment system was chosen as a third case-study (Figure 3.7). The system

is based on a fully functional water treatment CPS testbed in the iTrust laboratory [59].

The system consists of twelve hosts: Host-0 is the remote station; host-1 is the SCADA

server; host-2 is the SCADA workstation; host-3 is the engineer’s laptop; host-4 is the

operator Human Machine Interface (HMI); host-5 is the control room; host-6 to host-11

are the Programmable Logic Controllers (PLC) that control the physical process through

sensors and actuators. We suppose that the attacker has secured access to the remote

station (Host-0), and the PLCs (Hosts 6-11) are the attacker’s main target. There exists

a firewall separating host-0, host-1, host-2, host-3 and the rest of the system. The firewall

restricts the access from the remote station to host-1, host-2, and host-3. Also, it allows

access from host-1, host-2, and host-3 to the rest of the system. The communication with

the PLCs goes through host-5 and host-6. The PLCs communicate with host-5 and host-6

but not with each other.

The SCADA system components and services are all Siemens products. Online databases

[87, 88] have enlist that those components may have the following vulnerabilities, which we
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Figure 3.7: SCADA Architecture of Water Treatment System.

assume to be the case for an illustration of our approach:

1. The SCADA server is a SINEMA server, in which

(a) iws: The integrated web servers at Port 4999/TCP and Port 80/TCP may allow

unauthenticated remote code execution if an attacker has a network access to

the server.

(b) lmw: Local Microsoft Windows operating system users can escalate their priv-

ileges if the affected products are not installed under their default path (\C :

\\ProgramFiles\\ ∗ ” or the localized equivalent).

2. The SCADA workstation is a SIMATIC Wincc flexible runtime, in which

(a) rmm: The remote management module of SIMATIC Wincc flexible panel trans-

mits weakly protected credentials over the network. Attackers capturing network

traffic of the remote management module can reconstruct the credentials.

(b) inws: Siemens Wincc flexible allows remote attackers with user access to inject

arbitrary web script or HTML via unspecified vectors.
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3. The engineering Laptop runs a Wincc TIA portal, in which

(a) bac: When a user logs in, the application sets predictable authentication to-

ken/cookie values. This can allow an attacker to bypass authentication checks.

(b) inws: Wincc TIA portal allows remote attackers to inject arbitrary web script

or HTML via unspecified vectors.

4. The HMI runs a Wincc runtime advanced, in which

(a) rmm: The remote management module of Wincc runtime advanced transmits

weakly protected credentials over the network. Attackers capturing network

traffic of the remote management module can reconstruct the credentials.

(b) inws: Siemens Wincc runtime advanced allows remote attackers to inject arbi-

trary web script or HTML via unspecified vectors.

5. The control center runs a Wincc runtime professional, in which

(a) rmm: The remote management module of SIMATIC Wincc runtime professional

transmits weakly protected credentials over the network. Attackers capturing

network traffic of the remote management module can reconstruct the credentials.

(b) inws: Siemens Wincc flexible allows remote attackers to inject arbitrary web

script or HTML via unspecified vectors.

6. The PLCs are Siemens SIMATIC S7-1500 CPU PLC devices, in which

(a) rng: The random-number generator on Siemens SIMATIC S7-1500 CPU PLC

devices does not have sufficient entropy, which makes it easier for remote at-

tackers to defeat cryptographic protection mechanisms and hijack sessions via

unspecified vectors.



www.manaraa.com

58

The above listed SCADA system atomic vulnerabilities can be exploited resulting in the

following atomic attacks:

1. Remote code execution (rce): This attack exploits the vulnerability in SINEMA in-

tegrated web servers at Port 4999/TCP and Port 80/TCP if an attacker has network

access to the server. This attack gives the attacker user access to the attacked host.

2. Unquoted service paths (usp): This attack exploits the vulnerability in SINEMA

server windows operating system which allows a local user to escalate their privileges

to gain root access to the attacked host.

3. User credentials construction (ucc): This attack exploits the weakly protected creden-

tials in SIMATIC Wincc flexible, SIMATIC Wincc advanced, and SIMATIC Wincc

professional. This attack gives the attacker user access to the attacked host.

4. Cross-site scripting (xss): This attack exploits the web script and HTML code injec-

tion vulnerability in Wincc TIA portal, SIMATIC Wincc flexible, SIMATIC Wincc

advanced, and SIMATIC Wincc professional. This attack gives the attacker root

access to the attacked host.

5. Authentication token/cookie (atc): This attack exploits the predictable authentication

token/cookie values in a Wincc TIA portal. This attack gives the attacker root access

to the attacked host.

6. Cryptographic protection mechanisms (cpm): This attack exploits the vulnerability in

SIMATIC S7-1500 CPU random-number generator if the attacker has network access

to the PLCs. This attack gives the attacker root access to the attacked host.

The water treatment system can be formally specified as follows:

1. Set of hosts H = 0, 1, 2, · · · , 11; variable i ∈ {0, 1, 2, · · · , 11} (static parameters).

2. System connectivity, C ⊆ H × H ; Boolean; cij = 1 iff host i connected to host j

(static parameters).
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3. System services S; Boolean; si = 1 iff service s ∈ { SCADA server is SINEMA,

SIMATIC Wincc runtime flexible, Wincc runtime advanced, Wincc runtime profes-

sional, Wincc TIA portal, SIMATIC S7-1500 CPU } is running on host i (dynamic

variables).

4. System vulnerabilities V ; Boolean; vi = 1 iff vulnerability v ∈ { iws, lmw, rmm,

inws, bac, rng } exists on host i (static parameters).

5. Attack instances AI ⊆ A×H×H; labeled aij ≡ attack a from source i to target j, a ∈

{rce, usp, ucc, xss, atc}, rce := remote code execution, usp := unquoted service paths,

ucc := user credentials construction, xss := cross-site scripting atc := authentication

token/cookie (static parameters).

6. Trust relation T ⊆ H ×H ; Boolean; tij = 1 iff i is trusted by j (dynamic variables).

7. Attacker level of privilege L on host i; variable li ∈ {none, user, root} (dynamic

variables).

8. Attack pre-conditions:

• Pre(rceij) ≡ cij = 1 ∧ (li > user) ∧ (lj = none) ∧ iws = 1

• Pre(uspij) ≡ cij = 1 ∧ (li > user) ∧ (lj < root) ∧ lmw = 1

• Pre(uccij) ≡ cij = 1 ∧ (li > user) ∧ (lj = none) ∧ rmm = 1

• Pre(xssij) ≡ cij = 1 ∧ (li > user) ∧ (lj < root) ∧ inws = 1

• Pre(atcij) ≡ cij = 1 ∧ (li > user) ∧ (lj = none) ∧ bac = 1

• Pre(cpmij) ≡ cij = 1 ∧ (li > user) ∧ (lj = none) ∧ rng = 1

9. Attack post-conditions:

• post(rceij) ≡ (lj = user) ∧ (iws = 0)

• post(uspij) ≡ (lj = root) ∧ (lmw = 0)
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• post(uccij) ≡ (lj = user) ∧ (rmm = 0)

• post(xssij) ≡ (lj = root) ∧ (inws = 0)

• post(atcij) ≡ (lj = user) ∧ (bac = 0)

• post(cpmij) ≡ (lj = root) ∧ (rng = 0)

10. Intial states : l0 = root ∧ (l1 = l2 = · · · = l11 = none) ∧ (∀ij ∈ H × H : tij =

0) ∧ (iws = lmw = rmm = inws = bac = rng = 1)

(Initially, the attacker has root privilege on host-0 and no privilege on other hosts,

none of the hosts trust each other, and iws, lmw, rmm, inws, bac, and rng are

running on the SCADA system components.)

11. The security property φ of interest is violated if the attacker has the root privilege

level on host-6. This can then be described by a Computational Tree Logic (CTL)

formula:

¬φ ≡ AG(l6 = root).

An AADL+AGREE description that captures the formal description of the above sys-

tem, its components, connectivity, dynamic state variables, atomic attacks, and security

property of interest was encoded. The constructed system model M consists of a total of

1.9× 1014 states and 3.6× 1028 transitions, and was fed as input to our A2G2V tool.

We analyzed the security of the water treatment system, using A2G2V for φ = AG(l6 ≥

1)). This property represents all attack scenarios that an attacker may take to compromise

host-6. Our A2G2V algorithm successfully generated the attack-graph for this property as

demonstrated in Figure 3.8.

The A2G2V algorithm started by setting default search depth for attack-paths to K =

200. The first iteration generated an acyclic 5 steps attack-path, and so K was set to 5.

A2G2V generated all attack-paths of length 5 , generating 100 different attack-paths. Then

K was incremented to 6. This generated a cyclic attack-path, which then terminated the

search for the attack-paths. Table 3.3 summarizes this process.
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Figure 3.8: A2G2V generated Attack-graph for Water Treatment SCADA CPS

Table 3.3: Water Treatment SCADA CPS Attack Graph Search Summary

K Generated paths information Next K

200 (default) A 5-step acyclic attack-path K=5

5 100 acyclic attack-paths K=6

6 A cyclic attack-path generated Terminate A2G2V
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3.3.1 Discussions

On a standard computer, Core i5/2.2GHz/4GB RAM running Win 10, our algorithm

took 40 mins. The experimental results demonstrated the usefulness of our A2G2V al-

gorithm showing that it successfully generated attack-graphs in an automated fashion for

realistic applications such as the SCADA case study. The generated attack-graph helps the

system administrators to utilize the resources to maximize the security while minimize the

cost of consequences. An inspection reveals that the ucc and the xss are the most common

attacks. Also, the generated attack-graph demonstrates that an xss attack can never be

applied successfully without successfully executing a ucc attack first. So, by way stopping

the ucc attacks, the system administrators can also eliminate the xss attacks, which would

greatly improve the system security.
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CHAPTER 4. CRITICAL-ATTACKS SET IDENTIFICATION IN

ATTACK-GRAPHS FOR COMPUTER AND SCADA NETWORKS

In general, even small systems may have large and complex attack-graphs, and so for

system administrators with limits on budgets and resources, securing all vulnerabilities

included in an attack-graph might not be desirable. Further, the scale of the attack-graphs

make those difficult to fully comprehend through manual inspection. Thus securing an

SCADA/ICS system requires an automated tool to help system administrators analyze an

attack-graph to identify the minimum defense enactments that can help secure their system

in a viable fashion. We refer to such minimal set of attacks, a critical attacks-set, mitigating

which would render the attack-graph disconnected, and thereby disabling all attack-paths

that an adversary may exercise to compromise the given system.

Attack-graphs are directed labeled graphs, where each vertex corresponds to a certain

system status including attacker privileges on various devices/assets, each edge represents

an atomic attack that an attacker might execute to gain more privileges, and each path

from the initial node to a final node represents an attack path an attacker may follow to

compromise a system-level security property. The goal for a system administrator then

is to find a minimal number of attacks that could be prevented such that no viable path

remains from the initial node to a final node. In graph theory this is known as a cut. Since

the attack-graph is a directed labeled graph, finding the minimal number of attacks, whose

prevention would render the disconnection of the initial node from the final nodes, is an

instance of a “min label-cut” (MLC) [46, 47] that requires finding the minimum number of

attack-labels whose edges must be removed from a graph to cut all paths from the initial
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node to the final nodes. A direct application of the MLC to identify a set of critical attacks

is computationally limiting, since MLC is in general an NP-complete problem [46, 47].

In this chapter, we propose a linear complexity, automated critical-attacks set identifi-

cation approach, not necessarily minimal, based on the analysis of the attack-graph. The

first step within our approach is to compute the Strongly Connected Components (SCCs) of

a given attack-graph, and use those to generate an abstracted version of the attack-graph,

namely, the tree over its SCCs. (Recall that a subgraph of a directed graph, also called a

component, is strongly connected if there is a directed path from any vertex of the com-

ponent to every other vertex of the component, and where all vertices along the path are

within the component.) The next step is to employ a backward search over the abstracted

attack-graph (a tree over the SCCs), one hop at a step, starting from its terminal node, to

iteratively find the set of nodes that can reach the terminal node in a increasing number

steps, and identify the labels of their outgoing edges (each of which form a cut). Finally,

we identify the cut with a minimal number of labels, termed a SCC-induced Min Label-Cut

(min SCCiMLC).

To validate the SCCiMLC algorithm we present three case-studies: two computer net-

work systems and one water treatment SCADA CPS system from the iTrust Lab [59].

Further to compare the SCCiMLC algorithm efficiency, we compare it against an exact

and an approximation algorithm. For the former, we first generalize the exact MLC algo-

rithm proposed by [56], that works only for disjoint undirected graph with label frequency

of at most 2, to the general labeled-graphs. This exact MLC-algorithm searches over the

source-to-terminal paths (s-t paths in short): It starts by selecting an s-t path and picks the

labels included in the path. New s-t paths, whose all labels are not yet among the picked

labels, are selected iteratively and those new labels of the path are added to the selected

labels, until a MLC results. In addition to this exact algorithm, we also compare the SC-

CiMLC algorithm to the state-of-art approximation algorithm of [1], one that is shown to

possess the best approximation factor reported in literature. [1] proposes to compute an
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approximation to a MLC by optimizing over the minimum 0/1-polytope corresponding to

an “approximate” hitting set (details can be found in the cited reference).

The main contributions of this chapter are summarized as follows.

1. A linear, automated, and Strongly-Connected-Components (SCCs) based, critical-

attacks set identification algorithm, termed SCCiMLC.

2. An exact MLC algorithm inspired by [56], by way of its generalization.

3. A comparison between the proposed SCCiMLC algorithm performance, the general-

ized exact algorithm, and a state-of-art approximation algorithm.

4. Implementation of the proposed and two comparison algorithms, along with their

validation against two IT network examples and a water treatment CPS provided by

the iTrust Lab. The comparison and validation results are very promising for the 3

case-studies examined: The proposed SCCiMLC has the same accuracy as that of the

exact algorithm, while the same speed as that of the approximation algorithm, which

is > 65 times faster than the exact algorithm.

4.1 Critical-Attacks Set Computation

Consider an attack-graph G = (V,E, s, t, L, `), where V is the set of vertexes, E ⊆ V ×V

is the set of edges that connect a vertex to another, s is the source vertex, t is the terminal

vertex, L is a set of labels where each label represents an atomic attack, and ` : E → L is

an edge-labeling function.

Figure 4.1 shows an attack-graph example in which each sequence of edges, starting from

the source vertex s and ending at the terminal vertex t, represents an attack sequence that

can compromise a system under attack. Model-based approaches to computing an attack-

graph, given the system description, its atomic attack actions, and its security property of

interest, are reported in [47, 89, 63]
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Figure 4.1: Attack-Graph Example

Atomic attack actions can be mitigated by eliminating their root-cause vulnerabilities

(e.g., by way of providing available software patches for them), which is equivalent to

removing corresponding labeled edges from the attack graph. To make the overall system

secure so that a desired system-level security property of interest cannot be violated through

a sequence of atomic attack actions, a set of atomic attacks can be mitigated, so that the

removal of the corresponding labeled edges from the attack-graph renders it disconnected,

making the terminal vertex unreachable from the source vertex.

Such a set of atomic attacks can then be viewed as inducing a labeled cut of the attack-

graph, where a labeled cut is simply a set of labels L′ ⊆ L such that the removal of edges

carrying those labels disconnects the source and terminal vertices. An attack set that can

disconnect a given attack-graph is called a critical-attacks set. A desirable goal then is to

find a minimal critical-attacks set, finding which can be viewed as an instance of a “min

labeled-cut” (MLC) problem [1], whose goal is to identify the smallest set L′ ⊆ L of labels,

such that s and t become disconnected when the edges carrying the labels in L′ are deleted

from the attack-graph.

MLC is known to be an NP-complete problem [1, 48]. In order to find a “near-minimal

critical-attacks set” CA ⊆ L in a polynomial complexity manner, in this chapter we in-

troduce the notion of a “Strongly Connected Components-induced Min Label-Cut (SC-

CiMLC)” to approximate a minimal critical-attacks set. We also extend [56] to obtain
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an exact MLC algorithm and implement it for comparison. Also for comparison, we also

implement the state-of-art MLC approximation algorithm proposed in [1]. The said three

implemented algorithms are compared with respect to three case studies provided in the

next section.

4.1.1 Strongly Connected Components-induced Min Label-Cut

In our earlier work [89, 63] we developed an algorithm, A2G2V (Automated Attack

Graph Generation and Visualization), for model-based automated generation of attack-

graphs, extending the initial work of [47] to address security properties that can be a pred-

icate over state-trajectories, rather just a predicate of the states. A2G2V, in turn, relies on

our method for Automated Network Device and Vulnerability Identification (ANDVI) tool

[90] that passively observes network traffic to discover network connectivity and fingerprint

network devices, and next refers to their vulnerability databases to enumerate the device

vulnerabilities as well as the associated atomic attack actions. A2G2V uses the output of

ANDVI (device vulnerabilites and their connectivity) to then enumerate the set of all nest-

ing of atomic attack actions to yield an attack-graph, consisting of all sequences of atomic

attack actions (“attack-paths”) that can compromise a system-level security property.

The proposed SCCiMLC algorithm (Figure 4.2) approximates a solution to the MLC

problem, identifying a critical-attacks set in linear time in the following manner. It first

creates an abstracted tree version (i.e., an acyclic graph) of the given attack-graph, defined

over the vertex set of its strongly connected components (SCCs), and next uses a backward

search starting from the terminal node to iteratively identify a set of nodes that can reach

the terminal node in k or less steps (k ≥ 1), and also identifies the associated cuts in form of

the outgoing edges of the k-step backward reachable nodes. The cut withe smallest number

of labels yields a SCCiMLC.

To visualize the proposed SCCiMLC, consider a simpler case in which all the edges in

an attack-graph from source s to terminal t are forward edges, i.e., the given attack-graph
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has no cycles (is a tree), and so each node is its own SCC. Starting from t and reaching

backwards one hop at a time, one can iteratively identify the set of nodes that reach t in 1

or less, 2 or less, 3 or less, etc. steps. For each such set of nodes that can reach t in k or less

steps (k ≥ 1), there is a set of outgoing edges, cutting which induces a cut. Among those

cuts, the one with the minimum number of labels is the SCCiMLC. This same idea can be

applied to the tree graph over the SCCs of the given attack-graph, backward searching over

that tree to yield SCCs that are k or less steps away from the terminal node, and identifying

the labels of their outgoing edges as the label-cuts.

Figure 4.2: Architecture of the Critical-Attacks Identification (CAI) Algorithm.

Definition 4 For a graph (V,E), C ⊆ V is a Strongly Connected Component (SCC) if

for all u, v ∈ C, exists a sequence of edges, (u, v1)(v1, v2) . . . (vi, vi+1)(vi+1, vi+2) . . . (vn, v),

connecting u to v, such that v1 . . . vn ∈ C. The edge set EC of the SCC C is simply defined

to be, EC := E ∩ (C × C).

Definition 5 For the attack-graph (V,E, s, t, L, `), we obtain an abstracted graph over its

set of SCCs, (V, E , Cs, Ct, L, `), where V is the set of SCCs of (V,E); E := {(C,C ′) ∈

V × V|∃u ∈ C, v ∈ C ′, (u, v) ∈ E} is the set of edges connecting any two SSCs; Cs, Ct ∈ V

are the SCCs containing s, t respectively (i.e., s ∈ Cs, t ∈ Ct); and for any edge (C,C ′) ∈ E,

`((C,C ′)) = {l ∈ L|∃u ∈ C, v ∈ C ′, l = `(u, v)}, i.e., it is the union of all labels of the edges

connecting C to C ′.
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Once the abstracted graph (a tree over the SCCs) has been generated, we use a iterative

backward reach over the tree, one hop at a iteration, starting from its terminal SCC Ct

to identify the set of SCCs Vk ⊆ V that can reach the terminal one in k ≥ 0 iterations,

with initial value V0 = Ct. We also the set of outgoing edges Ek ⊆ E of Vk and their labels

Lk ⊆ L, with the initial values E0 = L0 = ∅. The following iterative computation over

0 ≤ k ≤ |V| − 1 performs these steps.

Initialize:

k = 0;Vk = {Ct}; Ek = Lk = ∅;

Iterate:

• Vk+1 := {C ∈ V|∃C ′ ∈ ∪i≤kVi such that (C,C ′) ∈ E};

• Ek+1 = {(C,C ′) ∈ E|C ∈ Vk+1, C
′ ∈ ∪i≤kVi};

• Lk+1 := `(Ek+1);

Terminate:

If ∪0≤i≤k+1Vi = V, then set i∗ := arg min1≤i≤k+1 |Li|, L∗ := Li∗ and stop; else, set

k = k + 1 and goto Iterate.

The algorithm picks i∗ to be the index with the smallest number of labels (i∗ =

arg min1≤i |Li|). Then Li∗ is a desired SCCiMLC that approximates the MLC.

The proposed SCCiMLC steps are formalized in the following algorithm:
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Algorithm 3 SCCiMLC Algorithm

1: Input: G = (V,E, s, t, L, `)

2: Output: A critical-attacks set, CA ⊆ L

3: main

4: Compute SCCs of G as in Definition 1

5: Generate the tree over the SCCs, (V, E , Cs, Ct, L, `) as in Definition 2

6: k = 0,Vk = {Ct}, Ek = ∅, Lk := `(Ek);

7: For k = 1 to k ≤ |V| − 1:

8: Vk+1 := {C ∈ V|∃C ′ ∈ ∪i≤kVi s.t. (C,C ′) ∈ E};

9: Ek+1 = {(C,C ′) ∈ E|C ∈ Vk+1, C
′ ∈ ∪i≤kVi};

10: Lk+1 := `(Ek+1);

11: k∗ := arg mink≥1 |Lk|;

12: CA := Lk∗ .

13: end

In Algorithm 3, the generation of the SCCs, the construction of the tree over the SCCs,

and also the backward reachability over that tree to find a SCCiMLC, can all be performed

in complexity that is linear in the size of the given attack-graph, meaning the proposed

ALgorithm 3 of finding SCCiMLC is of linear complexity. We encoded the above algorithm

for finding a SCCiMLC in the C language. It receives the output from our A2G2V algorithm

(that generates an attack-graph), which in turn receives input from our ANDVI algorithm

that processes network traffic to identify (i) the network devices and maps those against

the existing databases to identify their vulnerabilities and the corresponding atomic attack

actions, and (ii) the network connectivity.

To validate our min SCCiMLC implementation, we tested it on attack-graphs of two

computer network examples and the SCADA network used for the control of a water treat-

ment testbed at the iTrust lab in Singapore [59]. We also compared the results to an exact
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MLC algorithm inspired by [56] and to Dutta et al. [1] approximation algorithm, and both

of those algorithms are described below.

4.1.2 Implementing an Exact MLC

In an attempt to provide a polynomial complexity algorithm for computing an exact

MLC for a special case, [56] first showed that MLC is NP-hard if the maximum length of

any s-t path is longer than two, or if the maximum label frequency (the maximum number

of times that a label appears in a graph) fmax > 2. [56] also proved that, when restricted

to disjoint-path undirected graphs, MLC can be solved in polynomial time if fmax = 2. For

the sake of comparison with the proposed SCCiMLC, we extend the algorithm in [56] to a

general directed attack-graph. Note that the time complexity of the extended algorithm is

no longer polynomial.

Algorithm 3.4 in [56] is initialized by picking a path and all its edge-labels, say L0 ⊆ L

(those edge-labels from a candidate set of labels to be removed as part of a label-cut). Let

Lk be the set of labels at kth iteration (from past k selected paths). If cutting edges with

labels Lk does not induce a cut, then there must exist a s-t path whose none of the labels

are included in Lk. In the iterative step, such a path is found, and all its labels are added to

Lk to obtain Lk+1. The iteration terminates when a set of labels Lk that induces a label-cut

is found. The size of this label-cut can be further reduced by searching over all subsets of

Lk to find a minimal subset CA ⊆ Lk that also induces a cut. The exact algorithmic steps

are formalized below in Algorithm 4.



www.manaraa.com

72

Algorithm 4 MLC Exact Algorithm

1: Input: G = (V,E, s, t, L, `)

2: Output: A critical-attacks set, CA ⊆ L

3: main

4: Let Lk = φ

5: while Lk does not induce a cut

6: Pick any path p ∈ G such that `(p) ∩ Lk = ∅

7: Lk+1 = Lk ∪ `(p)

8: Identify all subsets A := {A ⊆ Lk}

9: Pick a minimal subset A ∈ A that induces a cut

10: CA := A

11: end

We encoded the above exact MLC algorithm in C, and used the implementation to

compare the performance against our own proposed algorithm in Section 4.2.

4.1.3 Implementing state-of-art Approximation Algorithm [1]

As note above in Section 1.3, a few prior studies have proposed algorithms for approxi-

mating a solution to the MLC problem, and among those, a few do not directly apply to a

general attack-graph and hence not suitable for comparison (for example the algorithm in

[47] requires an atomic attack to appear only once on an s-t path, which is generally not

the case as can be seen from our examples in Section 4.2.) Among the ones that are directly

applicable to a general attack-graph, we chose [1] for implementation and comparison, as

it can be considered the state-of-art given that it provides the best known approximation

factor.

It is known from [47] that finding a MLC is an instance of a hitting set problem: Given

a set of labels, one for each s-t path, namely, L{Lp ⊆ L | p a s-t path in G}, a hitting-set

is a minimal subset CA ⊆ L that intersects with each Lp, i.e., ∀p ∈ G : Lp ∩ CA 6= ∅. [1]
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proposed finding an approximation to the MLC solution by optimizing over a 0/1-polytope

which corresponds to a hitting set for the set for L.

Definition 6 [91] A 0/1-polytope in d-dimensional space is the convex hull of a set of d-

dimensional end points Q ⊆ {0, 1}d, whose vertices have 0/1-coordinates only (i.e., it is a

convex subset of the hypercube {0, 1}d with constraint on its coordinates being 0/1) .

The above mentioned hitting-set problem can be solved via a 0/1-polytope optimization

problem. We use PG to denote the set of all s-t paths in G. Define set of end points in the

|L|-dimensional unit-cube:

Q := {x ∈ {0, 1}|L| | ∀p ∈ PG,∃lk ∈ `(p) : x(k) = 1},

where lk denotes the kth label in the set L. In other words, each x ∈ Q “selects” at least

one label from each s-t path. Next, solve for:

min
x∈Q

∑
k∈{1,...,|L|}

x(k).

The solution to the above optimization provides an exact solution to MLC. To obtain

an approximate solution, a relaxed version of the hitting-set problem is formulated in [1],

where the end-points are allowed to be unit-interval valued numbers:

Q̂:={x∈ [0, 1]|L| |∀p∈PG : |p|≤|V |
2
3 , ∃lk∈`(p) :x(k)≥ 1

|V |
2
3

},

and the following optimization is performed:

min
x∈Q̂

∑
k∈{1,...,|L|}

x(k).

Let x∗ ∈ Q̂ be the minimizer. Then a label-cut is found as follows:

L′ := {lk ∈ L | x∗(k) ≥ 1

|V |
2
3

},

E′ := {e ∈ E | `(e) 6∈ L1},

L′′ := a MLC for G′ = (V,E′, s, t, L, `),

CA := L′ ∪ L′′.



www.manaraa.com

74

For implementing the above hitting-set solution based computation of an approximation

to MLC, we used the MatLab code from [92], where we modified the “separation oracle”

function to match the separation hyperplane algorithm in [1].

4.2 Case-studies: Computer Networks and Water Treatment SCADA

CPS

Realistic applications of two computer network examples and a real-world water treat-

ment testbed of the iTrust Lab [59], were chosen as case-studies to demonstrate the appli-

cability of the proposed SCCiMLC algorithm, and to compare its performance to both the

exact algorithm (our generalization of [56]) and the state-of-art approximation algorithm of

[1].

4.2.1 Computer Network Case-studies

As a concrete example illustrating the problem of critical-attacks set identification, we

adapt the networked-system example from [46, 47, 89, 63] shown in Figure 4.3.

There are three hosts in the network: host-0, where the attacker is located, while the

two target hosts are host-1 and host-2. Host-1 runs sshd and ftp, while host-2 runs ftp and

database. As a result, this system has four possible atomic attacks per host. There is also a

firewall that separates the targets from the rest of the network. The firewall does not place

any restrictions on access control over network traffic flow. The network traffic between

network hosts and external sources is supervised by an intrusion detection system (IDS).

The IDS can monitor the flow of traffic between (host-0 ; host-1) and (host-0 ; host-2), but

not between (host-1 ; host-2) because of its network positioning. The full system descrip-

tion and its implementation within our A2G2V (Automate Attack Graph Generation and

Visualization) tool can be found in [89, 63]. Figure 4.4 shows the automatically generated

attack-graph of this system using our tool A2G2V.
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Figure 4.3: 3-Hosts Networked-system example.

Figure 4.4: 3-Hosts Networked-system generated attack-graph.
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As a second computer network system example, we used a 5-hosts network Figure 4.5,

which is an extended version of the 3-hosts network descried above. Here, host-3 and host-4

are additional target hosts, that run ftp and sshd services as in the case of host-1, and hence

have the same vulnerabilities as host-1. As before, this system has four possible atomic

attacks per host. Also, as before, the firewall does not place any access control restrictions

on the flow of network traffic. Also due to the placement of IDS on the network, the traffic

flows between (host-0; host-1), (host-0; host-2), (host-0; host-3), and (host-0; host-4) are

monitored by the IDS, while those among (host-1; host-2; host-3; host-4) are not monitored.

The full system description and its implementation within our A2G2V tool can be found

in [89, 63]. Figure 4.6 shows the automatically generated attack-graph of this system using

our tool A2G2V.

Figure 4.5: 5-Hosts Networked-system example.
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Figure 4.6: 5-Hosts Networked-system generated attack-graph.
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4.2.2 Water Treatment SCADA CPS Case-study

Figure 4.7: SCADA Architecture of Water Treatment System.

The system shown in Figure 4.7 is that of a fully functional water treatment CPS

testbed in the iTrust laboratory [59]. The system consists of thirteen hosts: Host-0 is the

remote station; host-1 is the SCADA server; host-2 is the SCADA workstation; host-3 is

the engineer’s laptop; host-4 is the operator’s Human Machine Interface (HMI); host-5 is

the control room; host-6 to host-11 are the Programmable Logic Controllers (PLCs) that

control the physical process through sensors and actuators; host-12 is a Remote Terminal

Unit (RTU). We suppose that the attacker has been able to secure access to the remote

station (host-0).Host-0, host-1, host-2, host-3 and the remainder of the system are separated

by a firewall. The firewall restricts access to host-1, host-2, and host-3 from the remote

station. It also allows access to the remainder of the system from host-1, host-2, and host-3.

The communications with and among the PLCs go through host-4 and host-5. The PLCs

communicate with host-4 and host-5 but not with each other. The remote station (host-0)

communicates with the RTU (host-12). the RTU (host-12) communicates with PLC-6.
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The components and services of the SCADA system are all products from Siemens.

Online databases [87, 88] list that these components may have the following vulnerabilities,

which we assume to be the case to illustrate our approach:

1. The SCADA server is a SINEMA server, in which:

(a) iws: The built-in web servers at Port 4999/TCP and Port 80/TCP may allow

remote execution of unauthenticated code if the server is accessed by an attacker.

(b) lmw: If the impacted products are not mounted under their default route (”C :

\\ProgramFiles\\ ∗ ” or the localized equivalent), local Microsoft Windows

operating system users may increase their privileges.

2. The SCADA workstation is a SIMATIC Wincc flexible runtime, in which:

(a) rmm: The SIMATIC Wincc flexible panel remote management module trans-

mits weakly protected credentials across the network. The credentials can be

reconstructed by attackers capturing remote management module network traf-

fic.

(b) inws: Siemens Wincc flexible allows remote attackers with user access to inject

arbitrary web script or HTML via unspecified vectors.

3. The engineering Laptop runs a Wincc TIA portal, in which:

(a) bac: The application establishes predictable token / cookie authentication values

when a user logs in. This can enable an attacker to bypass checks on authenti-

cation.

(b) inws: Wincc TIA portal enables remote attackers to use unknown vectors to

inject arbitrary web script or HTML.
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4. The HMI runs a Wincc runtime advanced, in which

(a) rmm: The SIMATIC Wincc flexible panel remote management module trans-

mits weakly protected credentials across the network. The credentials can be

reconstructed by attackers capturing remote management module network traf-

fic.

(b) inws: Siemens Wincc runtime advanced allows remote attackers to inject arbi-

trary web script or HTML via unspecified vectors.

5. The control center runs a Wincc runtime professional, in which:

(a) rmm: The SIMATIC Wincc flexible panel remote management module trans-

mits weakly protected credentials across the network. The credentials can be

reconstructed by attackers capturing remote management module network traf-

fic.

(b) inws: Siemens Wincc flexible allows remote attackers to inject arbitrary web

script or HTML via unspecified vectors.

6. The PLCs are Siemens SIMATIC S7-1500 CPU PLC devices, in which

(a) rng: There is insufficient entropy in the random number generator on Siemens

SIMATIC S7-1500 CPU PLC systems, making it simpler for remote attackers

to defeat cryptographic protection mechanisms and hijack sessions via unknown

vectors.

7. The RTU (SICAM RTUs SM-2556 COM Modules)

(a) osdi: The impacted devices’ embedded internet server (port 80/tcp) could allow

remote attackers to acquire sensitive device data over the network.

(b) uxac: The integrated web server (port 80/tcp) of the affected devices could

allow unauthenticated remote attackers to execute arbitrary code on the affected

device.
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The above listed SCADA system atomic vulnerabilities can be exploited resulting in the

following atomic attacks:

1. Remote code execution (rce): This attack exploits the vulnerability in Port 4999/TCP

and Port 80/TCP embedded SINEMA web servers if the server is accessed by an

intruder. This attack provides user access to the attacked host.

2. Unquoted service paths (usp): This attack exploits the vulnerability in the operating

system of SINEMA server windows that enables a local user to increase their privileges

in order to obtain root access to the host being attacked.

3. User credentials construction (ucc): This attack exploits SIMATIC Wincc flexible,

SIMATIC Wincc advanced, and SIMATIC Wincc professional’s weakly protected cre-

dentials. This attack provides user access to the attacked host.

4. Cross-site scripting (xss): In Wincc TIA portal, SIMATIC Wincc flexible, SIMATIC

Wincc advanced, and SIMATIC Wincc professional, this attack exploits the vulnera-

bility of the web script and HTML code injection. This attack provides root access

to the host attacked by the attacker.

5. Authentication token/cookie (atc): This attack takes advantage of a Wincc TIA por-

tal’s predictable authentication token / cookie values. This attack provides root access

to the host attacked by the attacker.

6. Cryptographic protection mechanisms (cpm): This attack takes advantage of the

weakness in the random number generator of the SIMATIC S7-1500 CPU if the at-

tacker has access to the PLCs. This attack provides root access to the host attacked

by the attacker.

7. Unauthorized remote snifing (urs): This attack exploits the vulnerability of embedded

web servers of SICAM RTUs SM-2556 at Port 80/TCP if the server is accessed by an

adversary. This attack provides user access to the attacked host.
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8. Unauthorized remote execution (urx): This attack exploits the vulnerability of em-

bedded web servers of SICAM RTUs SM-2556 at Port 80/TCP if the server is accessed

by an adversary. This attack provides root access to the attacked host to the attacker.

The water treatment system can be formally specified as follows:

1. Set of hosts H = 0, 1, 2, · · · , 12; variable i ∈ {0, 1, 2, · · · , 12} (static parameters).

2. System connectivity, C ⊆ H × H ; Boolean; cij = 1 iff host i connected to host j

(static parameters).

3. System services S; Boolean; si = 1 iff service s ∈ { SCADA server is SINEMA,

SIMATIC Wincc runtime flexible, Wincc runtime advanced, Wincc runtime profes-

sional, Wincc TIA portal, SIMATIC S7-1500 CPU, SICAM RTUs SM-2556 } is run-

ning on host i (dynamic variables).

4. System vulnerabilities V ; Boolean; vi = 1 iff vulnerability v ∈ { iws, lmw, rmm,

inws, bac, rng, osdi, uxac} exists on host i (static parameters).

5. Attack instances AI ⊆ A ×H ×H; labeled aij ≡ attack a from source i to target j,

a ∈ {rce, usp, ucc, xss, atc, cpm, urs, urx} (static parameters).

6. Trust relation T ⊆ H ×H ; Boolean; tij = 1 iff i is trusted by j (dynamic variables).

7. Attacker level of privilege L on host i; variable li ∈ {none, user, root} (dynamic

variables).

8. Attack pre-conditions:

• Pre(rceij) ≡ cij = 1 ∧ (li > user) ∧ (lj = none) ∧ iws = 1

• Pre(uspij) ≡ cij = 1 ∧ (li > user) ∧ (lj < root) ∧ lmw = 1

• Pre(uccij) ≡ cij = 1 ∧ (li > user) ∧ (lj = none) ∧ rmm = 1

• Pre(xssij) ≡ cij = 1 ∧ (li > user) ∧ (lj < root) ∧ inws = 1
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• Pre(atcij) ≡ cij = 1 ∧ (li > user) ∧ (lj = none) ∧ bac = 1

• Pre(cpmij) ≡ cij = 1 ∧ (li > user) ∧ (lj = none) ∧ rng = 1

• Pre(ursij) ≡ cij = 1 ∧ (li > user) ∧ (lj = none) ∧ osdi = 1

• Pre(urxij) ≡ cij = 1 ∧ (li > user) ∧ (lj = none) ∧ uxac = 1

9. Attack post-conditions:

• post(rceij) ≡ (lj = user) ∧ (iws = 0)

• post(uspij) ≡ (lj = root) ∧ (lmw = 0)

• post(uccij) ≡ (lj = user) ∧ (rmm = 0)

• post(xssij) ≡ (lj = root) ∧ (inws = 0)

• post(atcij) ≡ (lj = user) ∧ (bac = 0)

• post(cpmij) ≡ (lj = root) ∧ (rng = 0)

• post(ursij) ≡ (lj = user) ∧ (osdi = 0)

• post(urxij) ≡ (lj = root) ∧ (uxac = 0)

10. Intial states : l0 = root ∧ (l1 = l2 = · · · = l11 = none) ∧ (∀ij ∈ H × H : tij =

0) ∧ (iws = lmw = rmm = inws = bac = rng = osdi = uxac = 1)

(Initially, the attacker has root privilege on host-0 and no privilege on other hosts,

none of the hosts trust each other, and iws, lmw, rmm, inws, bac, rng, osdi, and

uxac are running on the SCADA system components.)

11. The security property φ of interest is violated if the attacker has the root privilege

level on host-4, host-5, or host-6. This can then be described by a Computational

Tree Logic (CTL) formula:

¬φ ≡ AG((l4 = root) ∨ (l5 = root) ∨ (l6 = root)).
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Figure 4.8: Generated Attack-graph for Water Treatment SCADA CPS

We used our previously developed A2G2V tool [89, 63] to generate the attack-graph

for compromising this property, as shown in Figure 4.8. The input to A2G2V consists of

the network topology, specified in AADL (Architecure Analysis & Development Language)

[85], as well as the atomic attack actions associated with each of the network devices (and

their pre- and post-conditions), specified in the AGREE Annex [83] of AADL. Note that, the

water treatment SCADA system has 12 devices with 23 number of connections among them.
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The devices are exposed to 7 different types of vulnerability and subject to 8 different types

of atomic attacks per host (listed above). An atomic attack can be mounted on a device to

escalate attacker’s privilege level on a connected device, under certain pre-conditions. The

attack-graph then tracks the dynamically evolving privilege level of the attacker on all the

12 devices, as the atomic attacks occur by exploiting the vulnerabilities of the connected

devices. These atomic attacks can be nested to form 150 different attack-sequences (see

Figure 4.8) that an attacker may execute to violate the system-level security property

(namely, gain root access on host-4, host-5, or host-6), all of which were automatically

computed using our A2G2V tool, and that is also graphically displayed automatically.

4.3 Results and Discussion

Our implementation of the proposed SCCiMLC computed the critical-attacks set as,

CA = {rlog 12} for the 3-hosts system, CA = {rlog 32} for the 5-hosts system, and

CA = {cpm 6, xcc 5, xcc 4} for the water treatment SCADA CPS, meaning that applying

security measures to prevent an attacker from exploiting these attacks, can guarantee the

desired system-level security property of interest. It turns out that, a quick analysis confirms

that removing any smaller set of atomic attacks, i.e., a proper subset of CA does not

render the attack-graph disconnected. Thus the proposed SCCiMLC algorithm was able to

find a minimal critical-attacks set for the above applications we analyzed, which is quite

encouraging.

It can be seen that identifying the critical-attacks set hugely reduces the effort re-

quired to secure the system; in the 3-hosts system securing 1 atomic attack (rlog 12) out

of 4 × 2 = 8 atomic attack actions is required to secure the system; in the 5-hosts system

securing 1 atomic attack (rlog 32) out of 4 × 4 = 16 atomic attack actions is required

to secure the system; in the water treatment SCADA system securing 3 atomic attack

(cpm 6, xcc 5, xcc 4) out of 8 × 12 = 96 atomic attack actions is required to secure the

system.
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To compare the performance of the proposed SCCiMLC we computed the critical-attacks

set using an exact algorithm (our generalization of [56]) and a state-of-art approximation

algorithm of [1] (both described in Section 4.1). The exact algorithm identifies the critical-

attacks set as CA = {rlog 12} for the 3-hosts system, CA = {rlog 32} for the 5-hosts

system, and CA = {cpm 6, ucc 5, ucc 4} for the water treatment SCADA CPS. The ap-

proximation algorithm identifies the critical-attacks set as CA = {sbo 01, ftrp 02, ftrp 01}

for the 3-hosts system, CA = {sbo 03, ftrp 02, ftrp 03} for the 5-hosts system, and CA =

{atc 3, rce 1, xcc 2, urx 12} for the water treatment SCADA CPS. It can be seen that the

our proposed algorithm matches the exact one in the size of the MLCs (although the solu-

tions in the case of water treatment SCADA differ), whereas it supersedes the approximation

algorithm, which computed label-cuts of larger size in all 3 cases, compared to our proposed

SCCiMLC algorithm.

On a standard computer, with Core i5/2.2GHz/4GB RAM running Win 10, our SC-

CiMLC algorithm took 9 sec to compute the minimal critical-attacks set for the 3-hosts

system attack-graph, 9 sec to compute the minimal critical-attacks set for the 5-hosts sys-

tem attack-graph, and 15 sec to compute the minimal critical-attacks set from the water

treatment SCADA system attack-graph. In contrast, the exact algorithm (our generaliza-

tion of [56]) took 10 min to compute the minimal critical-attacks set for the 3-hosts system

as well as 5-hosts attack-graph, and 18 min to compute the minimal critical-attacks set from

the water treatment SCADA system attack-graph. The approximation algorithm of [1] took

9 sec to compute the minimal critical-attacks set for the 3-hosts system attack-graph, 9 sec

to compute the minimal critical-attacks set for the 5-hosts system attack-graph, and 16

sec to compute the minimal critical-attacks set from the water treatment SCADA system

attack-graph.

It can be noted that the proposed SCCiMLC algorithm produced very promising results;

the size of the cuts it computed matched the size of the solution computed using the exact

algorithm: In the computer network case studies, the SCCiMLC algorithm solution matched



www.manaraa.com

87

that computed using the exact algorithm. For the water treatment system, the identified

labels differ, while the size of the label-cut reported was still 3 as in the case of the exact

algorithm. However the speed of SCCiMLC is > 65 times faster. Conversely, the size of

the label-cut computed by the [1] approximation algorithm was always, although the speed

was comparable. In short, in the case-studies examined, the proposed SCCiMLC achieved

the accuracy of the exact algorithm and yet the speed of the approximation algorithm.
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CHAPTER 5. SUMMARY AND FUTURE WORK

SCADA/ICS systems control most critical infrastructures and industrial manufactur-

ing processes so compromising such systems could have a tremendous financial effect and

possibly even represent danger to human life. There is ongoing research directed toward

securing SCADA/ICS systems from different aspects of risk, but there has been no fully

secure SCADA/ICS system, so improvement is still possible. To improve SCADA/ICS se-

curity, we proposed a framework with supporting components to comprehensively cover

SCADA/ICS system vulnerability problems that can be addressed through system compo-

nent recognition, component vulnerability scan, vulnerability assessment, global vulnera-

bility assessment, and vulnerability resolution.

1. To address system component recognition, We presented a first-of-a-kind SCADA/ICS

system device identification approach, based on passive fingerprinting of network data,

using a two-stage process. The first stage is a learning stage during which a reference

fingerprints database was created. The second stage is a two-step online stage: the

first step identifies the control hierarchy based on the SCADA/ICS communication

patterns; the second step identifies a device by creating its fingerprint and comparing

it to the reference database of the first stage to identify the device type, manufacturer,

and model. Identifying the control hierarchy enhances the device recognition capabil-

ity since it enables further discrimination. Also, we fully implemented our approach

in Python and demonstrated the validity of the proposed solution through a real-life

Water Treatment SCADA system of the iTrust Lab.
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Due to the inherent control-hierarchy within the SCADA/ICS networks, the data

from a device does not go beyond its parent. This means that to achieve a complete

recognition, the data must be collect at each device or router. The latter results in

reduction in data collection points, but requires the analysis of the portion of the

data unaffected by the router actions. To this end, we proposed a first-of-a-kind

device recognition approach based on analysis of passively collected Modbus-data.

We also fully implemented this approach in Python and demonstrated the validity of

the proposed solution through a simulated water treatment SCADA system.

We encapsulated these implementations in our ANDVI (Automated Network Device

and Vulnerability Identification) tool and further integrated the tool with the existing

vulnerability databases to automatically map the discovered devices to their known

vulnerabilities.

2. To address global vulnerability assessment,We presented a first general model-based

automated attack graph generator and visualizer algorithm and its C-based imple-

mentation tool A2G2V, and also illustrated it through three examples. The key to

automation is the employment of an architectural description language to capture the

security-related details of a networked system, an automated encoding of the latest

counterexample to relax the current specification, and an iterative adjustment of the

search depth of a bounded model-checker to identify all the acyclic counterexamples.

Our algorithm formally models the system using AADL, iteratively model-checks the

system with JKind model-checker to generate attack paths, and combines the attack

paths into an attack-graph using GraphViz.

Our algorithm is sound and complete, works for any security property, and terminates

for any finite state-space. The latter is to be expected for practical applications, where

number of dynamic state-variables is finite and those evolve over finitely many values.

From mathematical perspective, one may consider infinite state-space, but then in

that setting, finding even a single counterexample is undecidable.
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3. Finally, to address component vulnerability We presented a linear complexity, au-

tomated critical-attacks set identification approach, by introducing the notion of a

strongly connected components-induced min label-cut (SCCiMLC) to approximate a

solution to the MLC problem. For this, we used the graph over the vertex set of

strongly connected components to obtain an abstracted attack-graph (a tree graph),

and next iteratively identified, starting for the terminal node, its backward reachable

nodes of higher and higher numbers of hops, and used their outgoing edges to form

the cuts and theirs labels to form the label-cuts. The smallest of these labels then

yielded a SCCiMLC.

We extended our tool-chain ANDVI (Automated Network Device and Vulnerability

Identification) [90] and A2G2V (Automated Attack Graph Generation and Visual-

ization) [89, 63] (seeFigure 2.1) to analyze an automatically generated attack-graph

(constructed from passive observations of network packets to identify devices and

their connectivity), to then obtain a SCCiMLC. This was done by automatically con-

structing the abstracted attack-graph over the SCCs, and performing the backward

reachability over the abstracted graph to find a SCCiMLC. The complexity of finding

SCCs, constructing the abstracted graph over the SCCs, and backward reachability

over those are all of linear-time complexity in the size of the original attack-graph. We

implemented our algorithm and demonstrated the validity of the proposed approach

through its application to two realistic computer networks and a real-world water

treatment SCADA system testbed from the iTrust Lab. The results showed that only

a fraction of the attacks among all possible ones formed a critical set (e.g., in case of

the water treatment SCADA, 3 out of 96), implying that identifying a critical attacks-

set can be hugely beneficial in securing complex networked systems while faced with

limited resources (budget and as well as the amount of downtime for maintenance).

To measure the proposed algorithm performance, we implemented an exact algorithm

and a state-of-art approximation algorithm taken from the literature, and compared
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their performance against the SCCiMLC algorithm. The size of the cut computed

by the SCCiMLC matched that computed by the exact algorithm, while the speed

matched that of the approximation algorithm. In contrast, the approximation algo-

rithm cut size was always larger that that of the SCCiMLC (or the exact algorithm).

In the examples considered, ¿65 times speedup was observed, without any loss of

accuracy.

5.0.1 Future Work

1. ANDVI: Automated Network Device and Vulnerability Identification in SCADA/ICS

by Passive Monitoring

Discovering the devices included in SCADA/ICS systems is an essential first step

toward improving their overall cybersecurity. A next step would be to implement

the proposed approach along with systems security analysis and mitigation tools, to

enhance their overall security and defense strategies against potential cyberattacks.

2. A2G2V: Automatic Attack Graph Generation and Visualization and its Ap-plications

to Computer and SCADA Networks

The availability of the system model is a crucial to the generation of the attack-graphs.

In general, it requires a certain one-time modeling effort to obtain the system descrip-

tion for components, connectivity, services, and their vulnerabilities. For example to

encode the water treatment CPS in AADL and the AGREE Annex, it took about an

hour. It may be possible to automate this by providing a graphical support (where a

user will draw the architecture and specify the atomic attacks for each of the compo-

nents, along with their pre- and post-conditions, and the overall security property),

while a tool will automatically generate the AADL model along with the AGREE

Annex. Thus, a future direction is to develop a graphical model capturing tool.

Our attack-graph generation algorithm is written in C-code, which interacts with the

model-checker JKind for the generation of the attack-paths one at a time, and with
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another tool Graphviz for visual display of the attack-graph. Much time is consumed

in interaction among the tools, in reading the outputs, parsing and processing, and

feeding back as inputs. If all tools are integrated into a single code, the computation

will become more efficient, and may be pursued as a future direction.

3. Critical-Attacks Set Identification in Attack-Graphs for Computer and SCADA Net-

works

Identifying the critical-attacks set in SCADA/ICS/Computer-networks systems is an

essential first step toward improving their overall cybersecurity in helping system ad-

ministrators optimally allocate their resources for enhancing security defenses. A next

step would be to integrate the proposed approach with a runtime security defense-

patch implementation tool to achieve an optimized resources based and defense imple-

mentation for enhancing the overall defense strategies and security against potential

cyberattacks.
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